当前位置: 首页>>代码示例>>Python>>正文


Python MotifConfig.get_score_dir方法代码示例

本文整理汇总了Python中gimmemotifs.config.MotifConfig.get_score_dir方法的典型用法代码示例。如果您正苦于以下问题:Python MotifConfig.get_score_dir方法的具体用法?Python MotifConfig.get_score_dir怎么用?Python MotifConfig.get_score_dir使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在gimmemotifs.config.MotifConfig的用法示例。


在下文中一共展示了MotifConfig.get_score_dir方法的1个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: MotifComparer

# 需要导入模块: from gimmemotifs.config import MotifConfig [as 别名]
# 或者: from gimmemotifs.config.MotifConfig import get_score_dir [as 别名]
class MotifComparer(object):
    """Class for motif comparison.
    
    Compare two or more motifs using a variety of metrics. Probably the best
    metric to compare motifs is seqcor. The implementation of this metric 
    is similar to the one used in Grau (2015), where motifs are scored 
    according to the Pearson correlation of the scores along sequence. In this
    case a de Bruijn of k=7 is used.

    Valid metrics are:
    seqcor - Pearson correlation of motif scores along sequence.
    pcc - Pearson correlation coefficient of motif PFMs.
    ed - Euclidean distance-based similarity of motif PFMs.
    distance - Distance-based similarity of motif PFMs.
    wic - Weighted Information Content, see van Heeringen 2011.
    chisq - Chi-squared similarity of motif PFMs.
    akl - Similarity based on average Kullback-Leibler similarity, see Mahony, 2011.
    ssd - Sum of squared distances of motif PFMs.
    
    Examples
    --------
    mc = MotifComparer()
    
    # Compare two motifs
    score, pos, strand = mc.compare_motifs(m1, m2, metric="seqcor")

    # Compare a list of motifs to another list of motifs
    mc.get_all_scores(motifs, dbmotifs, match, metric, combine)

    # Get the best match for every motif in a list of reference motifs
    get_closest_match(motifs, dbmotifs=None)
    """  
    def __init__(self):
        self.config = MotifConfig()
        self.metrics = ["pcc", "ed", "distance", "wic"]
        self.combine = ["mean", "sum"]
        self._load_scores()
        # Create a parallel python job server, to use for fast motif comparison
        

    def _load_scores(self):
        self.scoredist = {}
        for metric in self.metrics:
            self.scoredist[metric] = {"total": {}, "subtotal": {}}
            for match in ["total", "subtotal"]:
                for combine in ["mean"]:
                    self.scoredist[metric]["%s_%s" % (match, combine)] = {}
                    score_file = os.path.join(self.config.get_score_dir(), "%s_%s_%s_score_dist.txt" % (match, metric, combine))
                    if os.path.exists(score_file):
                        with open(score_file) as f:
                            for line in f:
                                l1, l2, m, sd = line.strip().split("\t")[:4]
                                self.scoredist[metric]["%s_%s" % (match, combine)].setdefault(int(l1), {})[int(l2)] = [float(m), float(sd)]
    
    def compare_motifs(self, m1, m2, match="total", metric="wic", combine="mean", pval=False):
        """Compare two motifs.
        
        The similarity metric can be any of seqcor, pcc, ed, distance, wic, 
        chisq, akl or ssd. If match is 'total' the similarity score is 
        calculated for the whole match, including positions that are not 
        present in both motifs. If match is partial or subtotal, only the
        matching psotiions are used to calculate the score. The score of
        individual position is combined using either the mean or the sum.

        Note that the match and combine parameters have no effect on the seqcor
        similarity metric.      

        Parameters
        ----------
        m1 : Motif instance
            Motif instance 1.

        m2 : Motif instance
            Motif instance 2.

        match : str, optional
            Match can be "partial", "subtotal" or "total". Not all metrics use 
            this.

        metric : str, optional
            Distance metric.

        combine : str, optional
            Combine positional scores using "mean" or "sum". Not all metrics
            use this.

        pval : bool, optional
            Calculate p-vale of match.
        
        Returns
        -------
        score, position, strand 
        """
        if metric == "seqcor":
            return seqcor(m1, m2)
        elif match == "partial":
            if pval:
                return self.pvalue(m1, m2, "total", metric, combine, self.max_partial(m1.pwm, m2.pwm, metric, combine))
            elif metric in ["pcc", "ed", "distance", "wic", "chisq", "ssd"]:
                return self.max_partial(m1.pwm, m2.pwm, metric, combine)
#.........这里部分代码省略.........
开发者ID:simonvh,项目名称:gimmemotifs,代码行数:103,代码来源:comparison.py


注:本文中的gimmemotifs.config.MotifConfig.get_score_dir方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。