当前位置: 首页>>代码示例>>Python>>正文


Python LdaModel.expElogbeta[:]方法代码示例

本文整理汇总了Python中gensim.models.ldamodel.LdaModel.expElogbeta[:]方法的典型用法代码示例。如果您正苦于以下问题:Python LdaModel.expElogbeta[:]方法的具体用法?Python LdaModel.expElogbeta[:]怎么用?Python LdaModel.expElogbeta[:]使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在gensim.models.ldamodel.LdaModel的用法示例。


在下文中一共展示了LdaModel.expElogbeta[:]方法的4个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: vwmodel2ldamodel

# 需要导入模块: from gensim.models.ldamodel import LdaModel [as 别名]
# 或者: from gensim.models.ldamodel.LdaModel import expElogbeta[:] [as 别名]
def vwmodel2ldamodel(vw_model, iterations=50):
    """Convert :class:`~gensim.models.wrappers.ldavowpalwabbit.LdaVowpalWabbit` to
    :class:`~gensim.models.ldamodel.LdaModel`.

    This works by simply copying the training model weights (alpha, beta...) from a trained vwmodel
    into the gensim model.

    Parameters
    ----------
    vw_model : :class:`~gensim.models.wrappers.ldavowpalwabbit.LdaVowpalWabbit`
        Trained Vowpal Wabbit model.
    iterations : int
        Number of iterations to be used for inference of the new :class:`~gensim.models.ldamodel.LdaModel`.

    Returns
    -------
    :class:`~gensim.models.ldamodel.LdaModel`.
        Gensim native LDA.

    """
    model_gensim = LdaModel(
        num_topics=vw_model.num_topics, id2word=vw_model.id2word, chunksize=vw_model.chunksize,
        passes=vw_model.passes, alpha=vw_model.alpha, eta=vw_model.eta, decay=vw_model.decay,
        offset=vw_model.offset, iterations=iterations, gamma_threshold=vw_model.gamma_threshold,
        dtype=numpy.float32
    )
    model_gensim.expElogbeta[:] = vw_model._get_topics()
    return model_gensim
开发者ID:dpritsos,项目名称:DoGSWrapper,代码行数:30,代码来源:ldavowpalwabbit.py

示例2: malletmodel2ldamodel

# 需要导入模块: from gensim.models.ldamodel import LdaModel [as 别名]
# 或者: from gensim.models.ldamodel.LdaModel import expElogbeta[:] [as 别名]
def malletmodel2ldamodel(mallet_model, gamma_threshold=0.001, iterations=50):
    """Convert :class:`~gensim.models.wrappers.ldamallet.LdaMallet` to :class:`~gensim.models.ldamodel.LdaModel`.

    This works by copying the training model weights (alpha, beta...) from a trained mallet model into the gensim model.

    Parameters
    ----------
    mallet_model : :class:`~gensim.models.wrappers.ldamallet.LdaMallet`
        Trained Mallet model
    gamma_threshold : float, optional
        To be used for inference in the new LdaModel.
    iterations : int, optional
        Number of iterations to be used for inference in the new LdaModel.

    Returns
    -------
    :class:`~gensim.models.ldamodel.LdaModel`
        Gensim native LDA.

    """
    model_gensim = LdaModel(
        id2word=mallet_model.id2word, num_topics=mallet_model.num_topics,
        alpha=mallet_model.alpha, iterations=iterations,
        gamma_threshold=gamma_threshold,
        dtype=numpy.float64  # don't loose precision when converting from MALLET
    )
    model_gensim.expElogbeta[:] = mallet_model.wordtopics
    return model_gensim
开发者ID:dpritsos,项目名称:DoGSWrapper,代码行数:30,代码来源:ldamallet.py

示例3: vwmodel2ldamodel

# 需要导入模块: from gensim.models.ldamodel import LdaModel [as 别名]
# 或者: from gensim.models.ldamodel.LdaModel import expElogbeta[:] [as 别名]
def vwmodel2ldamodel(vw_model, iterations=50):
    """
    Function to convert vowpal wabbit model to gensim LdaModel. This works by
    simply copying the training model weights (alpha, beta...) from a trained
    vwmodel into the gensim model.

    Args:
        vw_model : Trained vowpal wabbit model.
        iterations : Number of iterations to be used for inference of the new LdaModel.

    Returns:
        model_gensim : LdaModel instance; copied gensim LdaModel.
    """
    model_gensim = LdaModel(
        num_topics=vw_model.num_topics, id2word=vw_model.id2word, chunksize=vw_model.chunksize,
        passes=vw_model.passes, alpha=vw_model.alpha, eta=vw_model.eta, decay=vw_model.decay,
        offset=vw_model.offset, iterations=iterations, gamma_threshold=vw_model.gamma_threshold
    )
    model_gensim.expElogbeta[:] = vw_model._get_topics()
    return model_gensim
开发者ID:jMonteroMunoz,项目名称:gensim,代码行数:22,代码来源:ldavowpalwabbit.py

示例4: malletmodel2ldamodel

# 需要导入模块: from gensim.models.ldamodel import LdaModel [as 别名]
# 或者: from gensim.models.ldamodel.LdaModel import expElogbeta[:] [as 别名]
def malletmodel2ldamodel(mallet_model, gamma_threshold=0.001, iterations=50):
    """
    Function to convert mallet model to gensim LdaModel. This works by copying the
    training model weights (alpha, beta...) from a trained mallet model into the
    gensim model.

    Args:
        mallet_model : Trained mallet model
        gamma_threshold : To be used for inference in the new LdaModel.
        iterations : number of iterations to be used for inference in the new LdaModel.

    Returns:
        model_gensim : LdaModel instance; copied gensim LdaModel
    """
    model_gensim = LdaModel(
        id2word=mallet_model.id2word, num_topics=mallet_model.num_topics,
        alpha=mallet_model.alpha, iterations=iterations,
        gamma_threshold=gamma_threshold)
    model_gensim.expElogbeta[:] = mallet_model.wordtopics
    return model_gensim
开发者ID:JKamlah,项目名称:gensim,代码行数:22,代码来源:ldamallet.py


注:本文中的gensim.models.ldamodel.LdaModel.expElogbeta[:]方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。