当前位置: 首页>>代码示例>>Python>>正文


Python Dictionary.filterExtremes方法代码示例

本文整理汇总了Python中gensim.corpora.dictionary.Dictionary.filterExtremes方法的典型用法代码示例。如果您正苦于以下问题:Python Dictionary.filterExtremes方法的具体用法?Python Dictionary.filterExtremes怎么用?Python Dictionary.filterExtremes使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在gensim.corpora.dictionary.Dictionary的用法示例。


在下文中一共展示了Dictionary.filterExtremes方法的1个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: WikiCorpus

# 需要导入模块: from gensim.corpora.dictionary import Dictionary [as 别名]
# 或者: from gensim.corpora.dictionary.Dictionary import filterExtremes [as 别名]
class WikiCorpus(interfaces.CorpusABC):
    """
    Treat a wikipedia articles dump (*articles.xml.bz2) as a (read-only) corpus.
    
    The documents are extracted on-the-fly, so that the whole (massive) dump
    can stay compressed on disk.
    
    >>> wiki = WikiCorpus('enwiki-20100622-pages-articles.xml.bz2') # create word->word_id, takes almost 7h
    >>> wiki.saveAsText('wiki_en_vocab200k') # another 7.5h, creates a file in MatrixMarket format plus file with id->word
    
    """
    def __init__(self, fname, noBelow = 20, keep_words = 200000, dictionary = None):
        """
        Initialize the corpus. This scans the corpus once, to determine its 
        vocabulary (only the first `keep_words` most frequent words that 
        appear in at least `noBelow` documents are kept).
        """
        self.fname = fname
        if dictionary is None:
            self.dictionary = Dictionary(self.getArticles())
            self.dictionary.filterExtremes(noBelow = noBelow, noAbove = 0.1, keepN = keep_words)
        else:
            self.dictionary = dictionary

    
    def __len__(self):
        return self.numDocs


    def __iter__(self):
        """
        The function that defines a corpus -- iterating over the corpus yields 
        vectors, one for each document.
        """
        for docNo, text in enumerate(self.getArticles()):
            yield self.dictionary.doc2bow(text, allowUpdate = False)

        
    def saveDictionary(self, fname):
        """
        Store id->word mapping to a file, in format `id[TAB]word_utf8[TAB]document frequency[NEWLINE]`.
        """
        logger.info("saving dictionary mapping to %s" % fname)
        fout = open(fname, 'w')
        for token, tokenId in sorted(self.dictionary.token2id.iteritems()):
            fout.write("%i\t%s\t%i\n" % (tokenId, token, self.dictionary.docFreq[tokenId]))
        fout.close()
    
    
    @staticmethod
    def loadDictionary(fname):
        """
        Load previously stored mapping between words and their ids.
        
        The result can be used as the `id2word` parameter for input to transformations.
        """
        result = {}
        for lineNo, line in enumerate(open(fname)):
            cols = line[:-1].split('\t')
            if len(cols) == 2:
                wordId, word = cols
            elif len(cols) == 3:
                wordId, word, docFreq = cols
            else:
                continue
            result[int(wordId)] = word # docFreq not used
        return result
    
    
    def saveAsText(self, fname):
        """
        Store the corpus to disk, in a human-readable text format.
        
        This actually saves two files:
        
        1. Document-term co-occurence frequency counts (bag-of-words), as 
           a Matrix Market file `fname_bow.mm`.
        2. Token to integer mapping, as a text file `fname_wordids.txt`.
        
        """
        self.saveDictionary(fname + '_wordids.txt')
        matutils.MmWriter.writeCorpus(fname + '_bow.mm', self, progressCnt = 10000)
        
    
    def getArticles(self):
        """
        Iterate over the dump, returning text version of each article.
        
        Only articles of sufficient length are returned (short articles & redirects
        etc are ignored).
        """
        articles, intext = 0, False
        for lineno, line in enumerate(bz2.BZ2File(self.fname)):
            if line.startswith('      <text'):
                intext = True
                line = line[line.find('>') + 1 : ]
                lines = [line]
            elif intext:
                lines.append(line)
            pos = line.find('</text>') # can be on the same line as <text>
#.........这里部分代码省略.........
开发者ID:beibeiyang,项目名称:Latent-Dirichlet-Allocation,代码行数:103,代码来源:wikicorpus.py


注:本文中的gensim.corpora.dictionary.Dictionary.filterExtremes方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。