本文整理汇总了Python中ga.Ga.lt方法的典型用法代码示例。如果您正苦于以下问题:Python Ga.lt方法的具体用法?Python Ga.lt怎么用?Python Ga.lt使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类ga.Ga
的用法示例。
在下文中一共展示了Ga.lt方法的2个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: general
# 需要导入模块: from ga import Ga [as 别名]
# 或者: from ga.Ga import lt [as 别名]
print '#2d general ($A,\\;B$ are linear transformations)'
A2d = g2d.lt('A')
print 'A =', A2d
print '\\f{\\det}{A} =', A2d.det()
#A2d.adj().Fmt(4,'\\overline{A}')
print '\\f{\\Tr}{A} =', A2d.tr()
print '\\f{A}{e_u^e_v} =', A2d(eu^ev)
print '\\f{A}{e_u}^\\f{A}{e_v} =', A2d(eu)^A2d(ev)
B2d = g2d.lt('B')
print 'B =', B2d
print 'A + B =', A2d + B2d
print 'AB =', A2d * B2d
print 'A - B =', A2d - B2d
a = g2d.mv('a','vector')
b = g2d.mv('b','vector')
print r'a|\f{\overline{A}}{b}-b|\f{\underline{A}}{a} =',((a|A2d.adj()(b))-(b|A2d(a))).simplify()
print '#4d Minkowski spaqce (Space Time)'
m4d = Ga('e_t e_x e_y e_z', g=[1, -1, -1, -1],coords=symbols('t,x,y,z',real=True))
T = m4d.lt('T')
print 'g =', m4d.g
print r'\underline{T} =',T
print r'\overline{T} =',T.adj()
#m4d.mv(T.det()).Fmt(4,r'\f{\det}{\underline{T}}')
print r'\f{\mbox{tr}}{\underline{T}} =',T.tr()
a = m4d.mv('a','vector')
b = m4d.mv('b','vector')
print r'a|\f{\overline{T}}{b}-b|\f{\underline{T}}{a} =',((a|T.adj()(b))-(b|T(a))).simplify()
xpdf(paper='landscape')
示例2: main
# 需要导入模块: from ga import Ga [as 别名]
# 或者: from ga.Ga import lt [as 别名]
def main():
Print_Function()
(x, y, z) = xyz = symbols('x,y,z',real=True)
(o3d, ex, ey, ez) = Ga.build('e_x e_y e_z', g=[1, 1, 1], coords=xyz)
grad = o3d.grad
(u, v) = uv = symbols('u,v',real=True)
(g2d, eu, ev) = Ga.build('e_u e_v', coords=uv)
grad_uv = g2d.grad
v_xyz = o3d.mv('v','vector')
A_xyz = o3d.mv('A','vector',f=True)
A_uv = g2d.mv('A','vector',f=True)
print '#3d orthogonal ($A$ is vector function)'
print 'A =', A_xyz
print '%A^{2} =', A_xyz * A_xyz
print 'grad|A =', grad | A_xyz
print 'grad*A =', grad * A_xyz
print 'v|(grad*A) =',v_xyz|(grad*A_xyz)
print '#2d general ($A$ is vector function)'
print 'A =', A_uv
print '%A^{2} =', A_uv * A_uv
print 'grad|A =', grad_uv | A_uv
print 'grad*A =', grad_uv * A_uv
A = o3d.lt('A')
print '#3d orthogonal ($A,\\;B$ are linear transformations)'
print 'A =', A
print r'\f{mat}{A} =', A.matrix()
print '\\f{\\det}{A} =', A.det()
print '\\overline{A} =', A.adj()
print '\\f{\\Tr}{A} =', A.tr()
print '\\f{A}{e_x^e_y} =', A(ex^ey)
print '\\f{A}{e_x}^\\f{A}{e_y} =', A(ex)^A(ey)
B = o3d.lt('B')
print 'g =', o3d.g
print '%g^{-1} =', o3d.g_inv
print 'A + B =', A + B
print 'AB =', A * B
print 'A - B =', A - B
print 'General Symmetric Linear Transformation'
Asym = o3d.lt('A',mode='s')
print 'A =', Asym
print 'General Antisymmetric Linear Transformation'
Aasym = o3d.lt('A',mode='a')
print 'A =', Aasym
print '#2d general ($A,\\;B$ are linear transformations)'
A2d = g2d.lt('A')
print 'g =', g2d.g
print '%g^{-1} =', g2d.g_inv
print '%gg^{-1} =', simplify(g2d.g * g2d.g_inv)
print 'A =', A2d
print r'\f{mat}{A} =', A2d.matrix()
print '\\f{\\det}{A} =', A2d.det()
A2d_adj = A2d.adj()
print '\\overline{A} =', A2d_adj
print '\\f{mat}{\\overline{A}} =', simplify(A2d_adj.matrix())
print '\\f{\\Tr}{A} =', A2d.tr()
print '\\f{A}{e_u^e_v} =', A2d(eu^ev)
print '\\f{A}{e_u}^\\f{A}{e_v} =', A2d(eu)^A2d(ev)
B2d = g2d.lt('B')
print 'B =', B2d
print 'A + B =', A2d + B2d
print 'AB =', A2d * B2d
print 'A - B =', A2d - B2d
a = g2d.mv('a','vector')
b = g2d.mv('b','vector')
print r'a|\f{\overline{A}}{b}-b|\f{\underline{A}}{a} =',((a|A2d.adj()(b))-(b|A2d(a))).simplify()
m4d = Ga('e_t e_x e_y e_z', g=[1, -1, -1, -1],coords=symbols('t,x,y,z',real=True))
T = m4d.lt('T')
print 'g =', m4d.g
print r'\underline{T} =',T
print r'\overline{T} =',T.adj()
print r'\f{\det}{\underline{T}} =',T.det()
print r'\f{\mbox{tr}}{\underline{T}} =',T.tr()
#.........这里部分代码省略.........