本文整理汇总了Python中formating.FormatingDataSets.FormatingDataSets.get_abs_file_path方法的典型用法代码示例。如果您正苦于以下问题:Python FormatingDataSets.get_abs_file_path方法的具体用法?Python FormatingDataSets.get_abs_file_path怎么用?Python FormatingDataSets.get_abs_file_path使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类formating.FormatingDataSets.FormatingDataSets
的用法示例。
在下文中一共展示了FormatingDataSets.get_abs_file_path方法的14个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: analise
# 需要导入模块: from formating.FormatingDataSets import FormatingDataSets [as 别名]
# 或者: from formating.FormatingDataSets.FormatingDataSets import get_abs_file_path [as 别名]
def analise(calcDb, topRank,TestGraph, util, method):
order = sorted( list({ 'node1': r['node1'], 'node2': r['node2'], 'value' : r[method]} for r in calcDb) , key=lambda value: value['value'], reverse=True)
BD = None
if not os.path.exists(FormatingDataSets.get_abs_file_path(util.calculated_file + '.' + method +'.base.pdl')):
BD = generate_finalResult(order, topRank, TestGraph, FormatingDataSets.get_abs_file_path(util.calculated_file + '.' + method +'.base.pdl'))
else:
BD = reading_Database(FormatingDataSets.get_abs_file_path(util.calculated_file + '.' + method +'.base.pdl'))
return get_results(BD, method)
示例2: execution
# 需要导入模块: from formating.FormatingDataSets import FormatingDataSets [as 别名]
# 或者: from formating.FormatingDataSets.FormatingDataSets import get_abs_file_path [as 别名]
def execution(configFile):
#DEFINE THE FILE THAT WILL KEEP THE RESULT DATA
resultFile = open(FormatingDataSets.get_abs_file_path(configFile + 'T.EXPERIMENTO_ATUAL_CORE03.txt'), 'w')
resultFile.write("Inicio da operacao\n")
resultFile.write(str(datetime.datetime.now()))
resultFile.write("\n")
#READING THE CONFIG FILE
util = ParameterUtil(parameter_file = configFile)
#CREATING PARAMETRIZATION OBJECT WITH THE INFORMATIONS OF THE CONFIG FILE.
myparams = Parameterization(t0 = util.t0, t0_ = util.t0_, t1 = util.t1, t1_ = util.t1_, linear_combination=util.linear_combination,
filePathGraph = util.graph_file, filePathTrainingGraph = util.trainnig_graph_file, filePathTestGraph = util.test_graph_file, decay = util.decay, domain_decay = util.domain_decay, min_edges = util.min_edges, scoreChoiced = util.ScoresChoiced, weightsChoiced = util.WeightsChoiced, weightedScoresChoiced = util.WeightedScoresChoiced, FullGraph = None, result_random_file=util.result_random_file)
#GENERATING TRAINNING GRAPH BASED ON CONFIG FILE T0 AND T0_
myparams.generating_Training_Graph()
#GENERATING TEST GRAPH BASED ON CONcvb FIG FILE T1 AND T1_
myparams.generating_Test_Graph()
nodesSelection = NodeSelection(myparams.trainnigGraph, myparams.testGraph, util)
#GET THE AUTHORS THAT PUBLISH AT TRAINNING AND TEST
#A NUMBER OF PAPERS DEFINED AT MIN_EDGES IN CONFIG FILE
nodes = nodesSelection.get_NowellAuthorsCore()
#GET A PAIR OF AUTHORS THAT PUBLISH AT LEAST ONE ARTICLE AT TRAINNING AND TEST.
#DID NOT SEE ANY NEED
collaborations = nodesSelection.get_NowellColaboration()
#GET THE FIRST EDGES MADE BY THE COMBINATION OF NODES IN TRAINNING GRAPH
eOld = nodesSelection.get_NowellE(nodes,myparams.trainnigGraph)
#GET THE FIRST EDGES MADE BY THE COMBINATION OF NODES IN TEST GRAPH THAT DO NOT HAVE EDGES IN TRAINNING
eNew = nodesSelection.get_NowellE2(nodes, eOld, myparams.testGraph)
#GET THE NODES NOT LINKED OVER THE COMBINATION NODES.
nodesNotLinked = nodesSelection.get_PairsofNodesNotinEold(nodes)
#CREATING CALCULATION OBJECT
calc = CalculateInMemory(myparams,nodesNotLinked)
#CALCULATING THE SCORES.
resultsofCalculation = calc.executingCalculate()
#ORDERNING THE RESULTS RETURNING THE TOP N
orderingResults = calc.ordering(len(eNew), resultsofCalculation)
#SAVING THE ORDERED RESULTS.
calc.saving_orderedResult(util.ordered_file, orderingResults)
#ANALISE THE ORDERED RESULTS AND CHECK THE FUTURE.
ScoresResults = Analyse.AnalyseNodesWithScoresInFuture(orderingResults, myparams.testGraph)
#SAVING THE RESULTS.
for index in range(len(ScoresResults)):
Analyse.saving_analyseResult(ScoresResults[index], util.analysed_file + str(myparams.ScoresChoiced[index][0] ) + '.txt')
resultFile.write("TOTAL OF SUCESSS USING METRIC " + str(myparams.ScoresChoiced[index][0]) + " = " + str(Analyse.get_TotalSucess(ScoresResults[index]) ))
resultFile.write("\n")
resultFile.write("\n")
resultFile.write("Authors\tArticles\tCollaborations\tAuthors\tEold\tEnew\n")
resultFile.write( str(myparams.get_nodes(myparams.trainnigGraph))+ "\t" + str(myparams.get_edges(myparams.trainnigGraph)) + "\t\t" + str(len(collaborations)*2)+ "\t\t" + str(len(nodes)) + "\t" + str(len(eOld))+"\t" + str(len(eNew)))
resultFile.write("\n")
resultFile.write("Fim da Operacao\n")
resultFile.write(str(datetime.datetime.now()))
resultFile.close()
示例3: step05
# 需要导入模块: from formating.FormatingDataSets import FormatingDataSets [as 别名]
# 或者: from formating.FormatingDataSets.FormatingDataSets import get_abs_file_path [as 别名]
def step05(paramFile):
#util = ParameterUtil(parameter_file = 'data/formatado/arxiv/nowell_example_1994_1999.txt')
util = ParameterUtil(parameter_file = paramFile)
myparams = Parameterization(util.keyword_decay, util.lengthVertex, util.t0, util.t0_, util.t1, util.t1_, util.FeaturesChoiced, util.graph_file, util.trainnig_graph_file, util.test_graph_file, util.decay)
calc = Calculate(myparams, util.nodes_notlinked_file, util.calculated_file, util.ordered_file, util.maxmincalculated_file)
myparams.generating_Test_Graph()
analise = Analyse(myparams, FormatingDataSets.get_abs_file_path(util.calculated_file), FormatingDataSets.get_abs_file_path(util.analysed_file) + '.random.analised.txt', calc.qtyDataCalculated)
示例4: execution
# 需要导入模块: from formating.FormatingDataSets import FormatingDataSets [as 别名]
# 或者: from formating.FormatingDataSets.FormatingDataSets import get_abs_file_path [as 别名]
def execution(configFile):
#DEFINE THE FILE THAT WILL KEEP THE RESULT DATA
resultFile = open(FormatingDataSets.get_abs_file_path(configFile + 'core03.txt'), 'w')
resultFile.write("Inicio da operacao\n")
resultFile.write(str(datetime.datetime.now()))
resultFile.write("\n")
#READING THE CONFIG FILE
util = ParameterUtil(parameter_file = configFile)
#CREATING PARAMETRIZATION OBJECT WITH THE INFORMATIONS OF THE CONFIG FILE.
myparams = Parameterization(t0 = util.t0, t0_ = util.t0_, t1 = util.t1, t1_ = util.t1_, linear_combination=util.linear_combination,
filePathGraph = util.graph_file, filePathTrainingGraph = util.trainnig_graph_file, filePathTestGraph = util.test_graph_file, decay = util.decay, domain_decay = util.domain_decay, min_edges = util.min_edges, scoreChoiced = util.ScoresChoiced, weightsChoiced = util.WeightsChoiced, weightedScoresChoiced = util.WeightedScoresChoiced, FullGraph = None, result_random_file=util.result_random_file)
#GENERATING TRAINNING GRAPH BASED ON CONFIG FILE T0 AND T0_
myparams.generating_Training_Graph()
#GENERATING TEST GRAPH BASED ON CONcvb FIG FILE T1 AND T1_
myparams.generating_Test_Graph()
nodeSelection = NodeSelection(myparams.trainnigGraph, myparams.testGraph, util)
#if not os.path.exists(FormatingDataSets.get_abs_file_path(util.trainnig_graph_file + '.fuzzyinputy.txt')):
data = calculatingInputToFuzzy(myparams.trainnigGraph,nodeSelection.nodesNotLinked, myparams)
saving_files_calculting_input(FormatingDataSets.get_abs_file_path(util.trainnig_graph_file + '.inputFuzzy.txt'), data)
for item in data:
calc = FuzzyCalculation(item['intensityno1'], item['intensityno2'], item['similarity'], item['ageno1'], item['ageno2'])
print item['no1'], item['no2'], calc.potencial_ligacao, calc.grau_potencial_ligacao
resultFile.write("\n")
#
resultFile.write("Authors\tArticles\tCollaborations\tAuthors\tEold\tEnew\n")
resultFile.write( str(myparams.get_nodes(myparams.trainnigGraph))+ "\t" + str(myparams.get_edges(myparams.trainnigGraph)) + "\t\t" + str(len(nodeSelection.get_NowellColaboration())*2)+ "\t\t" + str(len(nodeSelection.nodes)) + "\t" + str(len(nodeSelection.eOld))+"\t" + str(len(nodeSelection.eNeW)))
resultFile.write("\n")
resultFile.write("Fim da Operacao\n")
resultFile.write(str(datetime.datetime.now()))
resultFile.close()
示例5: execution
# 需要导入模块: from formating.FormatingDataSets import FormatingDataSets [as 别名]
# 或者: from formating.FormatingDataSets.FormatingDataSets import get_abs_file_path [as 别名]
def execution(configFile, metricas):
#DEFINE THE FILE THAT WILL KEEP THE RESULT DATA
resultFile = open(FormatingDataSets.get_abs_file_path(configFile + 'core03.txt'), 'w')
resultFile.write("Inicio da operacao\n")
resultFile.write(str(datetime.datetime.now()))
resultFile.write("\n")
#READING THE CONFIG FILE
util = ParameterUtil(parameter_file = configFile)
#CREATING PARAMETRIZATION OBJECT WITH THE INFORMATIONS OF THE CONFIG FILE.
myparams = Parameterization(t0 = util.t0, t0_ = util.t0_, t1 = util.t1, t1_ = util.t1_, linear_combination=util.linear_combination,
filePathGraph = util.graph_file, filePathTrainingGraph = util.trainnig_graph_file, filePathTestGraph = util.test_graph_file, decay = util.decay, domain_decay = util.domain_decay, min_edges = util.min_edges, scoreChoiced = util.ScoresChoiced, weightsChoiced = util.WeightsChoiced, weightedScoresChoiced = util.WeightedScoresChoiced, FullGraph = None, result_random_file=util.result_random_file)
#GENERATING TRAINNING GRAPH BASED ON CONFIG FILE T0 AND T0_
myparams.generating_Training_Graph()
#GENERATING TEST GRAPH BASED ON CONcvb FIG FILE T1 AND T1_
myparams.generating_Test_Graph()
nodeSelection = NodeSelection(myparams.trainnigGraph, myparams.testGraph, util)
#CREATING CALCULATION OBJECT
weights = {'cn' : 1, 'aas': 1, 'pa':1, 'jc': 1, 'ts08':1,'ts05': 1, 'ts02':1}
calc = CalculatingCombinationOnlyNowell(myparams, nodeSelection.nodesNotLinked,weights,False )
saving_files_calculting(FormatingDataSets.get_abs_file_path(util.calculated_file), calc.results, metricas)
Analise = nodeSelection.AnalyseAllNodesNotLinkedInFuture(nodeSelection.nodesNotLinked, myparams.testGraph)
salvar_analise(FormatingDataSets.get_abs_file_path(util.analysed_file) + '.allNodes.csv', Analise)
resultFile.write("Authors\tArticles\tCollaborations\tAuthors\tEold\tEnew\n")
resultFile.write( str(myparams.get_nodes(myparams.trainnigGraph))+ "\t" + str(myparams.get_edges(myparams.trainnigGraph)) + "\t\t" + str(len(nodeSelection.get_NowellColaboration())*2)+ "\t\t" + str(len(nodeSelection.nodes)) + "\t" + str(len(nodeSelection.eOld))+"\t" + str(len(nodeSelection.eNeW)))
resultFile.write("\n")
resultFile.write("Fim da Operacao\n")
resultFile.write(str(datetime.datetime.now()))
resultFile.close()
示例6: execution
# 需要导入模块: from formating.FormatingDataSets import FormatingDataSets [as 别名]
# 或者: from formating.FormatingDataSets.FormatingDataSets import get_abs_file_path [as 别名]
def execution(configFile):
#DEFINE THE FILE THAT WILL KEEP THE RESULT DATA
resultFile = open(FormatingDataSets.get_abs_file_path(configFile + 'core03.txt'), 'w')
resultFile.write("Inicio da operacao\n")
resultFile.write(str(datetime.datetime.now()))
resultFile.write("\n")
#READING THE CONFIG FILE
util = ParameterUtil(parameter_file = configFile)
#CREATING PARAMETRIZATION OBJECT WITH THE INFORMATIONS OF THE CONFIG FILE.
myparams = Parameterization(t0 = util.t0, t0_ = util.t0_, t1 = util.t1, t1_ = util.t1_, linear_combination=util.linear_combination,
filePathGraph = util.graph_file, filePathTrainingGraph = util.trainnig_graph_file, filePathTestGraph = util.test_graph_file, decay = util.decay, domain_decay = util.domain_decay, min_edges = util.min_edges, scoreChoiced = util.ScoresChoiced, weightsChoiced = util.WeightsChoiced, weightedScoresChoiced = util.WeightedScoresChoiced, FullGraph = None, result_random_file=util.result_random_file)
#GENERATING TRAINNING GRAPH BASED ON CONFIG FILE T0 AND T0_
myparams.generating_Training_Graph()
#GENERATING TEST GRAPH BASED ON CONcvb FIG FILE T1 AND T1_
myparams.generating_Test_Graph()
nodeSelection = NodeSelection(myparams.trainnigGraph, myparams.testGraph, util)
#if not os.path.exists(FormatingDataSets.get_abs_file_path(util.trainnig_graph_file + '.fuzzyinputy.txt')):
data = calculatingInputToFuzzy(myparams.trainnigGraph,nodeSelection.nodesNotLinked, myparams)
dataSorted = sorted(data, key=lambda value: value['result'], reverse=True)
topRank = len(nodeSelection.eNeW)
totalCalculated = len(dataSorted)
dataToAnalysed = []
if (topRank >= totalCalculated):
for item in range(totalCalculated):
dataToAnalysed.append({'no1': dataSorted[item]['no1'], 'no2': dataSorted[item]['no2'], 'result': dataSorted[item]['result'] })
else:
for item in range(topRank):
dataToAnalysed.append({'no1': dataSorted[item]['no1'], 'no2': dataSorted[item]['no2'], 'result': dataSorted[item]['result'] })
analise = AnalyseNodesInFuture(dataToAnalysed, myparams.testGraph)
resultFile.write( repr(get_TotalSucess(analise)) )
resultFile.write("\n")
#
resultFile.write("Authors\tArticles\tCollaborations\tAuthors\tEold\tEnew\n")
resultFile.write( str(myparams.get_nodes(myparams.trainnigGraph))+ "\t" + str(myparams.get_edges(myparams.trainnigGraph)) + "\t\t" + str(len(nodeSelection.get_NowellColaboration())*2)+ "\t\t" + str(len(nodeSelection.nodes)) + "\t" + str(len(nodeSelection.eOld))+"\t" + str(len(nodeSelection.eNeW)))
resultFile.write("\n")
resultFile.write("Fim da Operacao\n")
resultFile.write(str(datetime.datetime.now()))
resultFile.close()
示例7: execution
# 需要导入模块: from formating.FormatingDataSets import FormatingDataSets [as 别名]
# 或者: from formating.FormatingDataSets.FormatingDataSets import get_abs_file_path [as 别名]
def execution(configFile):
#DEFINE THE FILE THAT WILL KEEP THE RESULT DATA
resultFile = open(FormatingDataSets.get_abs_file_path(configFile + 'wTScore03_010304.txt'), 'w')
resultFile.write("Inicio da operacao\n")
resultFile.write(str(datetime.datetime.now()))
resultFile.write("\n")
#READING THE CONFIG FILE
util = ParameterUtil(parameter_file = configFile)
#CREATING PARAMETRIZATION OBJECT WITH THE INFORMATIONS OF THE CONFIG FILE.
myparams = Parameterization(t0 = util.t0, t0_ = util.t0_, t1 = util.t1, t1_ = util.t1_, linear_combination=util.linear_combination,
filePathGraph = util.graph_file, filePathTrainingGraph = util.trainnig_graph_file, filePathTestGraph = util.test_graph_file, decay = util.decay, domain_decay = util.domain_decay, min_edges = util.min_edges, scoreChoiced = util.ScoresChoiced, weightsChoiced = util.WeightsChoiced, weightedScoresChoiced = util.WeightedScoresChoiced, FullGraph = None, result_random_file=util.result_random_file)
#GENERATING TRAINNING GRAPH BASED ON CONFIG FILE T0 AND T0_
myparams.generating_Training_Graph()
#GENERATING TEST GRAPH BASED ON CONcvb FIG FILE T1 AND T1_
myparams.generating_Test_Graph()
nodeSelection = NodeSelection(myparams.trainnigGraph, myparams.testGraph, util)
db = None
if not os.path.exists(FormatingDataSets.get_abs_file_path(util.trainnig_graph_file + '.base.pdl')):
db = generateWeights(myparams.trainnigGraph, FormatingDataSets.get_abs_file_path(util.trainnig_graph_file + '.base.pdl') , myparams)
else:
db = reading_Database(FormatingDataSets.get_abs_file_path(util.trainnig_graph_file + '.base.pdl'))
calcDb = None
if not os.path.exists(FormatingDataSets.get_abs_file_path(util.calculated_file + '.base.pdl')):
calcDb = calculatingWeights(myparams.trainnigGraph, nodeSelection.nodesNotLinked, db, FormatingDataSets.get_abs_file_path(util.calculated_file) + '.base.pdl')
else:
calcDb = reading_Database(FormatingDataSets.get_abs_file_path(util.calculated_file + '.base.pdl'))
ordering = get_ordering(calcDb, len(nodeSelection.eNeW))
result = get_analyseNodesInFuture(ordering, myparams.testGraph)
resultFile.write(repr(result))
resultFile.write("\n")
#
resultFile.write("Authors\tArticles\tCollaborations\tAuthors\tEold\tEnew\n")
resultFile.write( str(myparams.get_nodes(myparams.trainnigGraph))+ "\t" + str(myparams.get_edges(myparams.trainnigGraph)) + "\t\t" + str(len(nodeSelection.get_NowellColaboration())*2)+ "\t\t" + str(len(nodeSelection.nodes)) + "\t" + str(len(nodeSelection.eOld))+"\t" + str(len(nodeSelection.eNeW)))
resultFile.write("\n")
resultFile.write("Fim da Operacao\n")
resultFile.write(str(datetime.datetime.now()))
resultFile.close()
示例8: execution
# 需要导入模块: from formating.FormatingDataSets import FormatingDataSets [as 别名]
# 或者: from formating.FormatingDataSets.FormatingDataSets import get_abs_file_path [as 别名]
def execution(configFile):
#DEFINE THE FILE THAT WILL KEEP THE RESULT DATA
resultFile = open(FormatingDataSets.get_abs_file_path(configFile + 'core03_execucaoFinal_cstT02.txt'), 'w')
resultFile.write("Inicio da operacao\n")
resultFile.write(str(datetime.datetime.now()))
resultFile.write("\n")
#READING THE CONFIG FILE
util = ParameterUtil(parameter_file = configFile)
#CREATING PARAMETRIZATION OBJECT WITH THE INFORMATIONS OF THE CONFIG FILE.
myparams = Parameterization(t0 = util.t0, t0_ = util.t0_, t1 = util.t1, t1_ = util.t1_, linear_combination=util.linear_combination,
filePathGraph = util.graph_file, filePathTrainingGraph = util.trainnig_graph_file, filePathTestGraph = util.test_graph_file, decay = util.decay, domain_decay = util.domain_decay, min_edges = util.min_edges, scoreChoiced = util.ScoresChoiced, weightsChoiced = util.WeightsChoiced, weightedScoresChoiced = util.WeightedScoresChoiced, FullGraph = None, result_random_file=util.result_random_file)
#GENERATING TRAINNING GRAPH BASED ON CONFIG FILE T0 AND T0_
myparams.generating_Training_Graph()
#GENERATING TEST GRAPH BASED ON CONcvb FIG FILE T1 AND T1_
myparams.generating_Test_Graph()
nodeSelection = NodeSelection(myparams.trainnigGraph, myparams.testGraph, util)
#CREATING CALCULATION OBJECT
calc = CalculatingTogether(myparams, nodeSelection.nodesNotLinked)
ordering = calc.ordering(len(nodeSelection.eNeW))
#calc.saving_orderedResult(util.ordered_file, ordering)
calc.AnalyseNodesInFuture(ordering, myparams.testGraph)
resultFile.write(repr(calc.get_TotalSucess()))
resultFile.write("\n")
#
resultFile.write("Authors\tArticles\tCollaborations\tAuthors\tEold\tEnew\n")
resultFile.write( str(myparams.get_nodes(myparams.trainnigGraph))+ "\t" + str(myparams.get_edges(myparams.trainnigGraph)) + "\t\t" + str(len(nodeSelection.get_NowellColaboration())*2)+ "\t\t" + str(len(nodeSelection.nodes)) + "\t" + str(len(nodeSelection.eOld))+"\t" + str(len(nodeSelection.eNeW)))
resultFile.write("\n")
resultFile.write("Fim da Operacao\n")
resultFile.write(str(datetime.datetime.now()))
resultFile.close()
示例9: execution
# 需要导入模块: from formating.FormatingDataSets import FormatingDataSets [as 别名]
# 或者: from formating.FormatingDataSets.FormatingDataSets import get_abs_file_path [as 别名]
def execution(configFile, weights):
#DEFINE THE FILE THAT WILL KEEP THE RESULT DATA
resultFile = open(FormatingDataSets.get_abs_file_path(configFile + 'core03.txt'), 'w')
resultFile.write("Inicio da operacao\n")
resultFile.write(str(datetime.now()))
resultFile.write("\n")
#READING THE CONFIG FILE
util = ParameterUtil(parameter_file = configFile)
myparams = Parameterization(t0 = util.t0, t0_ = util.t0_, t1 = util.t1, t1_ = util.t1_, linear_combination=util.linear_combination,
filePathGraph = util.graph_file, filePathTrainingGraph = util.trainnig_graph_file, filePathTestGraph = util.test_graph_file, decay = util.decay, domain_decay = util.domain_decay, min_edges = util.min_edges, scoreChoiced = util.ScoresChoiced, weightsChoiced = util.WeightsChoiced, weightedScoresChoiced = util.WeightedScoresChoiced, FullGraph = None, result_random_file=util.result_random_file)
myparams.generating_Test_Graph()
myparams.generating_Training_Graph()
nodeSelection = NodeSelection(myparams.trainnigGraph, myparams.testGraph, util)
#CREATING CALCULATION OBJECT
calc = CalculatingCombinationOnlyNowell(myparams, nodeSelection.nodesNotLinked, weights, True)
ordering = calc.ordering(len(nodeSelection.eNeW))
calc.AnalyseNodesInFuture(ordering, myparams.testGraph)
resultFile.write(repr(calc.get_TotalSucess()))
resultFile.write("\n")
#
resultFile.write("Authors\tArticles\tCollaborations\tAuthors\tEold\tEnew\n")
resultFile.write( str(myparams.get_nodes(myparams.trainnigGraph))+ "\t" + str(myparams.get_edges(myparams.trainnigGraph)) + "\t\t" + str(len(nodeSelection.get_NowellColaboration())*2)+ "\t\t" + str(len(nodeSelection.nodes)) + "\t" + str(len(nodeSelection.eOld))+"\t" + str(len(nodeSelection.eNeW)))
resultFile.write("\n")
resultFile.write("Fim da Operacao\n")
resultFile.write(str(datetime.now()))
resultFile.close()
示例10: ParameterUtil
# 需要导入模块: from formating.FormatingDataSets import FormatingDataSets [as 别名]
# 或者: from formating.FormatingDataSets.FormatingDataSets import get_abs_file_path [as 别名]
if __name__ == '__main__':
util = ParameterUtil(parameter_file = 'data/formatado/exemplomenor/config/config.txt')
myparams = Parameterization(t0 = util.t0, t0_ = util.t0_, t1 = util.t1, t1_ = util.t1_,
filePathGraph = util.graph_file, filePathTrainingGraph = util.trainnig_graph_file, filePathTestGraph = util.test_graph_file, decay = util.decay, domain_decay = util.domain_decay, min_edges = util.min_edges, scoreChoiced = util.ScoresChoiced, weightsChoiced = util.WeightsChoiced, weightedScoresChoiced = util.WeightedScoresChoiced, FullGraph = None)
myparams.generating_Training_Graph()
myparams.generating_Test_Graph()
selection = VariableSelection(myparams.trainnigGraph, util.min_edges)
nodesNotLinked = selection.get_pair_nodes_not_linked()
calc = CalculateInMemory(myparams, nodesNotLinked)
resultsCalculate = calc.executingCalculate()
calc.Separating_calculateFile()
analise = Analyse(myparams, FormatingDataSets.get_abs_file_path(util.calculated_file), FormatingDataSets.get_abs_file_path(util.analysed_file) + '.random.analised.txt', calc.qtyDataCalculated)
topRank = Analyse.getTopRank(util.analysed_file + '.random.analised.txt')
calc.Ordering_separating_File(topRank)
for OrderingFilePath in calc.getfilePathOrdered_separeted():
analise = Analyse(myparams, OrderingFilePath, OrderingFilePath + '.analised.txt', topRank )
print "Trainning Period:", myparams.t0, " - ", myparams.t0_
print "Test Period:", myparams.t1, " - ", myparams.t1_
print "# Papers in Trainning: ", myparams.get_edges(myparams.trainnigGraph)
print "# Authors in Training: ", myparams.get_nodes(myparams.trainnigGraph)
print "# Papers in Test: ", myparams.get_edges(myparams.testGraph)
print "# Authors in Test", myparams.get_nodes(myparams.testGraph)
print "# pair of Authors with at least 3 articles Calculated: ", calc.qtyDataCalculated #FormatingDataSets.getTotalLineNumbers(FormatingDataSets.get_abs_file_path(util.calculated_file))
示例11: ParameterUtil
# 需要导入模块: from formating.FormatingDataSets import FormatingDataSets [as 别名]
# 或者: from formating.FormatingDataSets.FormatingDataSets import get_abs_file_path [as 别名]
'''
Created on Aug 22, 2015
@author: cptullio
Analysing the results
'''
from parametering.ParameterUtil import ParameterUtil
from parametering.Parameterization import Parameterization
from calculating.Calculate import Calculate
from analysing.Analyse import Analyse
from calculating.VariableSelection import VariableSelection
from formating.FormatingDataSets import FormatingDataSets
import networkx
if __name__ == '__main__':
util = ParameterUtil(parameter_file = 'data/formatado/arxiv/nowell_example_1994_1999.txt')
myparams = Parameterization(util.keyword_decay, util.lengthVertex, util.t0, util.t0_, util.t1, util.t1_, util.FeaturesChoiced, util.graph_file, util.trainnig_graph_file, util.test_graph_file, util.decay)
myparams.generating_Training_Graph()
selection = VariableSelection(myparams.trainnigGraph, util.nodes_notlinked_file,util.min_edges, True)
calc = Calculate(myparams, util.nodes_notlinked_file, util.calculated_file, util.ordered_file, util.maxmincalculated_file)
wg = calc.adding_normalize_values_tograph(myparams.trainnigGraph)
networkx.write_graphml(wg, FormatingDataSets.get_abs_file_path(util.trainnig_graph_file + '.weighted.txt'))
node993 =set(n for n,d in wg.edges(data=True) if n == 993 and d == 994)
print node993
示例12: getTopRank
# 需要导入模块: from formating.FormatingDataSets import FormatingDataSets [as 别名]
# 或者: from formating.FormatingDataSets.FormatingDataSets import get_abs_file_path [as 别名]
def getTopRank(relativeFilePathRandomAnalised):
absFile = FormatingDataSets.get_abs_file_path(relativeFilePathRandomAnalised)
f = open(absFile, 'r')
for last in f:
pass
return int(last.split('\t')[1])
示例13: ParameterUtil
# 需要导入模块: from formating.FormatingDataSets import FormatingDataSets [as 别名]
# 或者: from formating.FormatingDataSets.FormatingDataSets import get_abs_file_path [as 别名]
from analysing.Analyse import Analyse
from calculating.VariableSelection import VariableSelection
from formating.FormatingDataSets import FormatingDataSets
import networkx
import mysql.connector
if __name__ == '__main__':
util = ParameterUtil(parameter_file = 'data/formatado/arxiv/nowell_astroph_1994_1999.txt')
myparams = Parameterization(util.keyword_decay, util.lengthVertex, util.t0, util.t0_, util.t1, util.t1_, util.FeaturesChoiced, util.graph_file, util.trainnig_graph_file, util.test_graph_file, util.decay)
myparams.generating_Training_Graph()
AllNodes = VariableSelection(myparams.trainnigGraph, util.nodes_file,util.min_edges, True)
calc = Calculate(myparams, util.nodes_file, util.calculated_file, util.ordered_file, util.maxmincalculated_file)
print 'armazenando resultados'
cnx = mysql.connector.connect(user='root', password='1234',
host='127.0.0.1',
database='calculos')
add_result = ("INSERT INTO resultadopesos "
"(no1, no2, resultados) "
"VALUES (%s, %s, %s)")
cursor = cnx.cursor()
calculatedFile = open(FormatingDataSets.get_abs_file_path(util.calculated_file), 'r')
for linha in calculatedFile:
dado = Calculate.reading_calculateLine(linha)
data_result = (dado[1], dado[2].replace('\n',''),str(dado[0]))
cursor.execute(add_result, data_result)
calculatedFile.close()
cnx.commit()
cursor.close()
cnx.close()
示例14: ParameterUtil
# 需要导入模块: from formating.FormatingDataSets import FormatingDataSets [as 别名]
# 或者: from formating.FormatingDataSets.FormatingDataSets import get_abs_file_path [as 别名]
for line in calculatedFile:
if texto in line:
result = line
break
elif textov2 in line:
result = line
break
calculatedFile.seek(0)
return result
if __name__ == '__main__':
util = ParameterUtil(parameter_file = 'data/formatado/arxiv/nowell_astroph_1994_1999.txt')
calculatedFile = open(FormatingDataSets.get_abs_file_path(util.calculated_file), 'r')
for linha in calculatedFile:
x.append(Calculate.reading_calculateLine(linha))
calculatedFile.close()
myparams = Parameterization(util.keyword_decay, util.lengthVertex, util.t0, util.t0_, util.t1, util.t1_, util.FeaturesChoiced, util.graph_file, util.trainnig_graph_file, util.test_graph_file, util.decay)
myparams.generating_Training_Graph()
Nodes_notLinked = VariableSelection(myparams.trainnigGraph, util.nodes_notlinked_file,util.min_edges)
nodes_notlinkedFile = open(FormatingDataSets.get_abs_file_path(util.nodes_notlinked_file), 'r')
qtyLine = 0
qtyCalculated = 0
f = open(FormatingDataSets.get_abs_file_path(util.calculated_file )+ '.weight.txt', 'w')
minValueCalculated = list(99999 for x in myparams.featuresChoice)
maxValueCalculated = list(0 for x in myparams.featuresChoice)
qtyFeatures = len(myparams.featuresChoice)
for line in nodes_notlinkedFile:
qtyLine = qtyLine + 1