本文整理汇总了Python中fidimag.micro.Sim.do_procession方法的典型用法代码示例。如果您正苦于以下问题:Python Sim.do_procession方法的具体用法?Python Sim.do_procession怎么用?Python Sim.do_procession使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类fidimag.micro.Sim
的用法示例。
在下文中一共展示了Sim.do_procession方法的8个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: test_dw_dmi
# 需要导入模块: from fidimag.micro import Sim [as 别名]
# 或者: from fidimag.micro.Sim import do_procession [as 别名]
def test_dw_dmi(mesh=mesh, do_plot=False):
Ms = 8.0e5
sim = Sim(mesh, name='relax')
sim.set_m(m_init_dw)
sim.set_tols(rtol=1e-8, atol=1e-12)
sim.Ms = Ms
sim.alpha = 0.5
sim.do_procession = False
A = 1.3e-11
D = 4e-4
Kx = 8e4
Kp = -6e5
sim.add(UniformExchange(A))
sim.add(DMI(D))
sim.add(UniaxialAnisotropy(Kx, axis=[1, 0, 0], name='Kx'))
sim.relax(stopping_dmdt=0.01)
xs = np.array([p[0] for p in mesh.coordinates])
mx, my, mz = analytical(xs, A=A, D=D, K=Kx)
mxyz = sim.spin.copy()
mxyz = mxyz.reshape(-1, 3)
assert max(abs(mxyz[:, 0] - mx)) < 0.002
assert max(abs(mxyz[:, 1] - my)) < 0.002
assert max(abs(mxyz[:, 2] - mz)) < 0.0006
if do_plot:
save_plot(mxyz, mx, my, mz)
示例2: relax_system
# 需要导入模块: from fidimag.micro import Sim [as 别名]
# 或者: from fidimag.micro.Sim import do_procession [as 别名]
def relax_system(mesh):
sim = Sim(mesh, name='relax')
sim.set_tols(rtol=1e-6, atol=1e-6)
sim.alpha = 0.5
sim.gamma = 2.211e5
sim.Ms = 8.6e5
sim.do_procession = False
sim.set_m(init_m)
#sim.set_m((0,0.1,1))
#sim.set_m(np.load('m0.npy'))
A = 1.3e-11
exch = UniformExchange(A=A)
sim.add(exch)
dmi = DMI(D=1.3e-3)
sim.add(dmi)
anis = UniaxialAnisotropy(-3.25e4, axis=(0, 0, 1))
sim.add(anis)
zeeman = Zeeman((0, 0, 6.014576e4))
sim.add(zeeman, save_field=True)
sim.relax(dt=1e-13, stopping_dmdt=0.5, max_steps=5000,
save_m_steps=None, save_vtk_steps=50)
np.save('m0.npy', sim.spin)
示例3: relax_system
# 需要导入模块: from fidimag.micro import Sim [as 别名]
# 或者: from fidimag.micro.Sim import do_procession [as 别名]
def relax_system(mesh):
sim = Sim(mesh, name='relax')
sim.set_tols(rtol=1e-10, atol=1e-14)
sim.alpha = 0.5
sim.gamma = 2.211e5
sim.Ms = 8.6e5
sim.do_procession = False
sim.set_m(init_m)
# sim.set_m(np.load('m0.npy'))
A = 1.3e-11
exch = UniformExchange(A=A)
sim.add(exch)
dmi = DMI(D=1e-3)
sim.add(dmi)
zeeman = Zeeman((0, 0, 2e4))
sim.add(zeeman, save_field=True)
sim.relax(dt=1e-13, stopping_dmdt=0.01, max_steps=5000,
save_m_steps=None, save_vtk_steps=50)
np.save('m0.npy', sim.spin)
示例4: compute_field
# 需要导入模块: from fidimag.micro import Sim [as 别名]
# 或者: from fidimag.micro.Sim import do_procession [as 别名]
def compute_field():
mesh = CuboidMesh(nx=1, ny=1, nz=1, dx=2.0, dy=2.0, dz=2.0, unit_length=1e-9, periodicity=(True, True, False))
sim = Sim(mesh, name='relax')
sim.set_tols(rtol=1e-10, atol=1e-14)
sim.alpha = 0.5
sim.gamma = 2.211e5
sim.Ms = 8.6e5
sim.do_procession = False
sim.set_m((0,0,1))
# sim.set_m(np.load('m0.npy'))
A = 1.3e-11
exch = UniformExchange(A=A)
sim.add(exch)
demag = Demag(pbc_2d=True)
sim.add(demag)
field=demag.compute_field()
print field
np.save('m0.npy', sim.spin)
示例5: relax_system
# 需要导入模块: from fidimag.micro import Sim [as 别名]
# 或者: from fidimag.micro.Sim import do_procession [as 别名]
def relax_system(mesh):
# Only relaxation
sim = Sim(mesh, name='relax')
# Simulation parameters
sim.set_tols(rtol=1e-8, atol=1e-10)
sim.alpha = 0.5
sim.gamma = 2.211e5
sim.Ms = 8.6e5
sim.do_procession = False
# The initial state passed as a function
sim.set_m(init_m)
# sim.set_m(np.load('m0.npy'))
# Energies
A = 1.3e-11
exch = UniformExchange(A=A)
sim.add(exch)
anis = UniaxialAnisotropy(5e4)
sim.add(anis)
# dmi = DMI(D=8e-4)
# sim.add(dmi)
# Start relaxation and save the state in m0.npy
sim.relax(dt=1e-14, stopping_dmdt=0.00001, max_steps=5000,
save_m_steps=None, save_vtk_steps=None)
np.save('m0.npy', sim.spin)
示例6: relax_system_only_exchange
# 需要导入模块: from fidimag.micro import Sim [as 别名]
# 或者: from fidimag.micro.Sim import do_procession [as 别名]
def relax_system_only_exchange(mesh):
sim = Sim(mesh, name='relax_exchange_only')
sim.set_tols(rtol=1e-6, atol=1e-6)
sim.alpha = 0.5
sim.gamma = 2.211e5
sim.Ms = 8.6e5
sim.do_procession = False
sim.set_m(init_m_BP)
A = 1.3e-11
exch = UniformExchange(A=A)
sim.add(exch)
sim.relax(dt=1e-13, stopping_dmdt=0.5, max_steps=5000,
save_m_steps=None, save_vtk_steps=50)
np.save('m0.npy', sim.spin)
示例7: test_compute_field
# 需要导入模块: from fidimag.micro import Sim [as 别名]
# 或者: from fidimag.micro.Sim import do_procession [as 别名]
def test_compute_field():
"""In an infinite film, we expect the demag tensor to be (0, 0, -1), and thus the
magnetisation, if aligned in 0, 0, 1 direction, to create a demag field pointing
with equal strength in the opposite direction.
"""
mesh = CuboidMesh(nx=1, ny=1, nz=1, dx=2.0, dy=2.0, dz=2.0,
unit_length=1e-9, periodicity=(True, True, False))
sim = Sim(mesh, name='relax')
sim.set_tols(rtol=1e-10, atol=1e-14)
sim.alpha = 0.5
sim.gamma = 2.211e5
sim.Ms = 8.6e5
sim.do_procession = False
sim.set_m((0, 0, 1))
demag = Demag(pbc_2d=True)
sim.add(demag)
field=demag.compute_field()
print(1 + field[2] / 8.6e5)
assert abs(1 + field[2] / 8.6e5) < 1e-10
示例8: init_m
# 需要导入模块: from fidimag.micro import Sim [as 别名]
# 或者: from fidimag.micro.Sim import do_procession [as 别名]
def init_m(pos):
x, y = pos[0] - radius, pos[1] - radius
if x ** 2 + y ** 2 < radius ** 2:
return (0, 0, -1)
else:
return (0, 0, 1)
# Prepare simulation
# We define the cylinder with the Magnetisation function
sim = Sim(mesh, name='skyrmion_down')
sim.Ms = cylinder
# To get a faster relaxation, we tune the LLG equation parameters
sim.do_procession = False
sim.alpha = 0.5
# Initial magnetisation:
sim.set_m(init_m)
# Energies:
# Exchange
sim.add(UniformExchange(A=A))
# Bulk DMI
sim.add(DMI(D=D))
# Relax the system
sim.relax(dt=1e-12, stopping_dmdt=0.0001, max_steps=5000,