本文整理汇总了Python中fidimag.atomistic.Sim.add方法的典型用法代码示例。如果您正苦于以下问题:Python Sim.add方法的具体用法?Python Sim.add怎么用?Python Sim.add使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类fidimag.atomistic.Sim
的用法示例。
在下文中一共展示了Sim.add方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: test_exch_2d_pbc2d
# 需要导入模块: from fidimag.atomistic import Sim [as 别名]
# 或者: from fidimag.atomistic.Sim import add [as 别名]
def test_exch_2d_pbc2d():
"""
Test the exchange field components in a 2D mesh with PBCs
The mesh sites:
3 4 5 --> (0,1,0) (1,1,0) (2,1,0)
y ^ 0 1 2 (0,0,0) (1,0,0) (2,0,0)
|
x -->
The expected components are in increasing order along x
"""
mesh = CuboidMesh(nx=3, ny=2, nz=1, periodicity=(True, True, False))
print mesh.neighbours
sim = Sim(mesh)
exch = UniformExchange(1)
sim.add(exch)
sim.set_m(init_m, normalise=False)
field = exch.compute_field()
expected_x = np.array([3, 4, 5, 3, 4, 5])
expected_y = np.array([2, 2, 2, 2, 2, 2])
# Since the field ordering is now: fx1 fy1 fz1 fx2 ...
# We extract the x components jumping in steps of 3
assert np.max(abs(field[::3] - expected_x)) == 0
# For the y component is similar, now we start at the 1th
# entry and jump in steps of 3
assert np.max(abs(field[1::3] - expected_y)) == 0
# Similar fot he z component
assert np.max(field[2::3]) == 0
示例2: relax_system
# 需要导入模块: from fidimag.atomistic import Sim [as 别名]
# 或者: from fidimag.atomistic.Sim import add [as 别名]
def relax_system(mesh):
# Only relaxation
sim = Sim(mesh, name='relax')
# Simulation parameters
sim.driver.set_tols(rtol=1e-8, atol=1e-10)
sim.alpha = 0.5
sim.driver.gamma = 2.211e5 / mu0
sim.mu_s = 1e-27 / mu0
sim.driver.do_precession = False
# The initial state passed as a function
sim.set_m(init_m)
# sim.set_m(np.load('m0.npy'))
# Energies
exch = UniformExchange(J=2e-20)
sim.add(exch)
anis = Anisotropy(0.01*2e-20, axis=(0, 0, 1))
sim.add(anis)
# dmi = DMI(D=8e-4)
# sim.add(dmi)
# Start relaxation and save the state in m0.npy
sim.relax(dt=1e-14, stopping_dmdt=1e4, max_steps=5000,
save_m_steps=None, save_vtk_steps=None)
np.save('m0.npy', sim.spin)
示例3: test_exch_1d
# 需要导入模块: from fidimag.atomistic import Sim [as 别名]
# 或者: from fidimag.atomistic.Sim import add [as 别名]
def test_exch_1d():
"""
Test the x component of the exchange field
in a 1D mesh, with the spin ordering:
0 1 2 3 4 5
"""
mesh = CuboidMesh(nx=5, ny=1, nz=1)
sim = Sim(mesh)
exch = Exchange(1.0)
sim.add(exch)
sim.set_m(init_m, normalise=False)
field = exch.compute_field()
assert field[0] == 1
assert field[1 * 3] == 2
assert field[2 * 3] == 4
assert field[3 * 3] == 6
assert field[4 * 3] == 3
assert np.max(field[2::3]) == 0
assert np.max(field[1::3]) == 0
示例4: test_exch_3d
# 需要导入模块: from fidimag.atomistic import Sim [as 别名]
# 或者: from fidimag.atomistic.Sim import add [as 别名]
def test_exch_3d():
"""
Test the exchange field of the spins in this 3D mesh:
bottom layer:
8 9 10 11
4 5 6 7 x 2
0 1 2 3
The assertions are the mx component
of the: 0, 1, 2, .. 7 spins
Remember the new new ordering: fx1, fy1, fz1, fx2, ...
"""
mesh = CuboidMesh(nx=4, ny=3, nz=2)
sim = Sim(mesh)
exch = UniformExchange(1)
sim.add(exch)
sim.set_m(init_m, normalise=False)
field = exch.compute_field()
# print field
assert field[0] == 1
assert field[3] == 0 + 1 + 2 + 1
assert field[6] == 1 + 2 + 3 + 2
assert field[9] == 2 + 3 + 3
assert field[4 * 3] == 1
assert field[5 * 3] == 5
assert field[6 * 3] == 10
assert field[7 * 3] == 11
示例5: test_dynamic
# 需要导入模块: from fidimag.atomistic import Sim [as 别名]
# 或者: from fidimag.atomistic.Sim import add [as 别名]
def test_dynamic():
mesh = CuboidMesh(nx=1, ny=1, nz=1)
sim = Sim(mesh, name='dyn_spin', driver='llg_stt_cpp')
# sim.set_options(rtol=1e-10,atol=1e-14)
sim.driver.gamma = 1.0
sim.mu_s = 1.0
sim.set_m((0.8,0,-1))
Kx = Anisotropy(Ku=-0.05, axis=(0, 0, 1), name='Kz')
sim.add(Kx)
sim.p = (0,0,1)
sim.a_J = 0.0052
sim.alpha = 0.1
ts = np.linspace(0, 1200, 401)
for t in ts:
sim.driver.run_until(t)
mz = sim.spin[2]
alpha, K, u = 0.1, 0.05, 0.0052
print(mz, u/(2*alpha*K))
#########################################################
# The system used in this test can be solved analytically, which gives that mz = u/(2*alpha*K),
# where K represents the easy-plane anisotropy.
###
assert abs(mz - u/(2*alpha*K))/mz< 5e-4
示例6: dynamic
# 需要导入模块: from fidimag.atomistic import Sim [as 别名]
# 或者: from fidimag.atomistic.Sim import add [as 别名]
def dynamic(mesh):
sim = Sim(mesh, name='dyn', driver='slonczewski')
# sim.set_options(rtol=1e-10,atol=1e-14)
sim.gamma = 1.0
sim.mu_s = 1.0
sim.set_m(np.load('m0.npy'))
J = 1.0
exch = UniformExchange(J)
sim.add(exch)
Kx = Anisotropy(Ku=0.005, axis=(1, 0, 0), name='Kx')
sim.add(Kx)
sim.p = (0,0,1)
sim.u0 = 0.03
sim.alpha = 0.1
ts = np.linspace(0, 1e3, 101)
for t in ts:
sim.run_until(t)
sim.save_vtk()
print t
示例7: test_exch_energy_1d
# 需要导入模块: from fidimag.atomistic import Sim [as 别名]
# 或者: from fidimag.atomistic.Sim import add [as 别名]
def test_exch_energy_1d():
mesh = CuboidMesh(nx=2, ny=1, nz=1)
sim = Sim(mesh)
exch = UniformExchange(1.23)
sim.add(exch)
sim.set_m((0, 0, 1))
energy = exch.compute_energy()
assert energy == -1.23
示例8: test_demag_two_spin_xx
# 需要导入模块: from fidimag.atomistic import Sim [as 别名]
# 或者: from fidimag.atomistic.Sim import add [as 别名]
def test_demag_two_spin_xx():
mesh = CuboidMesh(nx=2, ny=1, nz=1)
sim = Sim(mesh)
demag = Demag()
sim.add(demag)
sim.set_m((1, 0, 0))
field = demag.compute_field()
print field
assert(field[0] == 2e-7)
assert(field[3] == 2e-7)
示例9: test_sim_pin
# 需要导入模块: from fidimag.atomistic import Sim [as 别名]
# 或者: from fidimag.atomistic.Sim import add [as 别名]
def test_sim_pin():
mesh = CuboidMesh(nx=3, ny=2, nz=1)
sim = Sim(mesh)
sim.set_m((0, 0.8, 0.6))
sim.alpha = 0.1
sim.gamma = 1.0
sim.pins = pin_fun
anis = Anisotropy(Ku=1.0, axis=[0, 0, 1], name='Dx')
sim.add(anis)
sim.run_until(1.0)
assert sim.spin[0] == 0
assert sim.spin[2] != 0
示例10: excite_system
# 需要导入模块: from fidimag.atomistic import Sim [as 别名]
# 或者: from fidimag.atomistic.Sim import add [as 别名]
def excite_system(mesh, Hy=0):
sim = Sim(mesh, name="dyn")
sim.set_options(rtol=1e-10, atol=1e-12)
sim.alpha = 0.04
sim.gamma = 1.0
sim.mu_s = 1.0
sim.set_m(np.load("m0.npy"))
J = 1.0
exch = UniformExchange(J)
sim.add(exch)
D = 0.18
dmi = DMI(D)
sim.add(dmi)
zeeman = Zeeman([0, Hy, 2e-2], name="H")
sim.add(zeeman)
hx = TimeZeeman([0, 0, 1e-5], sinc_fun, name="h")
sim.add(hx, save_field=True)
dt = 5
steps = 2001
for i in range(steps):
sim.run_until(i * dt)
示例11: excite_system
# 需要导入模块: from fidimag.atomistic import Sim [as 别名]
# 或者: from fidimag.atomistic.Sim import add [as 别名]
def excite_system(mesh):
sim = Sim(mesh, name='dyn')
# sim.set_options(rtol=1e-10,atol=1e-14)
sim.driver.alpha = 0.04
sim.driver.gamma = 1.0
sim.mu_s = 1.0
sim.set_m(np.load('m0.npy'))
J = 1.0
exch = UniformExchange(J)
sim.add(exch)
D = 0.09
dmi = DMI(D)
sim.add(dmi)
zeeman = Zeeman([0, 0, 3.75e-3], name='H')
sim.add(zeeman)
w0 = 0.02
def time_fun(t):
return np.exp(-w0 * t)
hx = TimeZeeman([0, 0, 1e-5], sinc_fun, name='h')
sim.add(hx, save_field=True)
ts = np.linspace(0, 20000, 5001)
for t in ts:
sim.run_until(t)
print 'sim t=%g' % t
示例12: test_sim_spins
# 需要导入模块: from fidimag.atomistic import Sim [as 别名]
# 或者: from fidimag.atomistic.Sim import add [as 别名]
def test_sim_spins(do_plot=False):
mesh = CuboidMesh(nx=10, ny=5, nz=1)
sim = Sim(mesh, name='10spin')
alpha = 0.1
gamma = 2.21e5
sim.alpha = alpha
sim.gamma = gamma
sim.mu_s = 1.0
sim.set_m((1, 0, 0))
print(sim.spin)
H0 = 1e5
sim.add(Zeeman((0, 0, H0)))
ts = np.linspace(0, 1e-9, 101)
mx = []
my = []
mz = []
real_ts = []
for t in ts:
sim.run_until(t)
real_ts.append(sim.t)
#print sim.t, abs(sim.spin_length()[0] - 1)
av = sim.compute_average()
mx.append(av[0])
my.append(av[1])
mz.append(av[2])
#sim.save_vtk()
mz = np.array(mz)
# print mz
a_mx, a_my, a_mz = single_spin(alpha, gamma, H0, ts)
print(sim.stat())
if do_plot:
plot(real_ts, mx, my, mz, a_mx, a_my, a_mz, name='spins.pdf', title='integrating spins')
print(("Max Deviation = {0}".format(
np.max(np.abs(mz - a_mz)))))
assert np.max(np.abs(mz - a_mz)) < 5e-7
示例13: test_exch_1d_pbc
# 需要导入模块: from fidimag.atomistic import Sim [as 别名]
# 或者: from fidimag.atomistic.Sim import add [as 别名]
def test_exch_1d_pbc():
mesh = CuboidMesh(nx=5, ny=1, nz=1, periodicity=(True, False, False))
sim = Sim(mesh)
exch = UniformExchange(1)
sim.add(exch)
sim.set_m(init_m, normalise=False)
field = exch.compute_field()
assert field[0] == 1 + 4
assert field[3] == 2
assert field[6] == 4
assert field[9] == 6
assert field[12] == 3 + 0
assert np.max(field[2::3]) == 0
assert np.max(field[1::3]) == 0
示例14: test_hexagonal_demags_2D
# 需要导入模块: from fidimag.atomistic import Sim [as 别名]
# 或者: from fidimag.atomistic.Sim import add [as 别名]
def test_hexagonal_demags_2D():
"""
Comparison of the FFT approach for hexagonal meshes, named
DemagHexagonal, where it is used a system with the double number
of nodes along the x direction (i.e. a mesh with twice the number
of nodes of the original mesh), against the full calculation
of the Demag field
"""
# Number of atoms
N = 15
a = 0.4
mesh = HexagonalMesh(a * 0.5, N, N,
unit_length=1e-9,
alignment='square')
# Centre
xc = (mesh.Lx * 0.5)
yc = (mesh.Ly * 0.5)
mu_s = 2 * const.mu_B
sim = Sim(mesh)
sim.mu_s = mu_s
sim.set_m(lambda pos: m_init_2Dvortex(pos, (xc, yc)))
# Brute force demag calculation
sim.add(DemagFull())
sim.get_interaction('demag_full').compute_field()
sim.get_interaction('demag_full').field
demag_full_energy = sim.compute_energy() / const.meV
# Demag using the FFT approach and a larger mesh
sim2 = Sim(mesh)
sim2.mu_s = mu_s
sim2.set_m(lambda pos: m_init_2Dvortex(pos, (xc, yc)))
sim2.add(DemagHexagonal())
sim2.get_interaction('demag_hex').compute_field()
sim2.compute_energy()
demag_2fft_energy = sim2.compute_energy() / const.meV
# We compare both energies scaled in meV
assert (demag_full_energy - demag_2fft_energy) < 1e-10
示例15: test_exch_2d
# 需要导入模块: from fidimag.atomistic import Sim [as 别名]
# 或者: from fidimag.atomistic.Sim import add [as 别名]
def test_exch_2d():
mesh = CuboidMesh(nx=5, ny=2, nz=1)
sim = Sim(mesh)
exch = UniformExchange(1)
sim.add(exch)
sim.set_m(init_m, normalise=False)
field = exch.compute_field()
assert np.max(field[2::3]) == 0
assert field[0] == 1
assert field[3] == 2 + 1
assert field[6] == 1 + 2 + 3
assert field[9] == 2 + 3 + 4
assert field[12] == 3 + 4