当前位置: 首页>>代码示例>>Python>>正文


Python Feature.load_all方法代码示例

本文整理汇总了Python中feature.Feature.load_all方法的典型用法代码示例。如果您正苦于以下问题:Python Feature.load_all方法的具体用法?Python Feature.load_all怎么用?Python Feature.load_all使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在feature.Feature的用法示例。


在下文中一共展示了Feature.load_all方法的2个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: run_online

# 需要导入模块: from feature import Feature [as 别名]
# 或者: from feature.Feature import load_all [as 别名]
 def run_online(self):
     # load feature matrix
     online_features = Feature.load_all(self.config.get('DIRECTORY', 'feature_pt'),
                                        self.config.get('FEATURE', 'feature_selected').split(),
                                        self.config.get('MODEL', 'online_rawset_name'),
                                        self.config.get('FEATURE', 'will_save'))
     model = Model.new(self.config.get('MODEL', 'model_name'), self.config)
     model_fp = self.config.get('DIRECTORY', 'model_pt') + '/se.%s.model' % self.config.get('MODEL', 'model_name')
     model.load(model_fp)
     online_preds = model.predict(online_features)
     online_preds_fp = '%s/se_online.%s.pred' % (self.config.get('DIRECTORY', 'pred_pt'),
                                                 self.config.get('MODEL', 'online_test_rawset_name'))
     DataUtil.save_vector(online_preds_fp, online_preds, 'w')
开发者ID:liuzongquan,项目名称:kaggle-quora-question-pairs,代码行数:15,代码来源:runner.py

示例2: run_offline

# 需要导入模块: from feature import Feature [as 别名]
# 或者: from feature.Feature import load_all [as 别名]
    def run_offline(self):
        LogUtil.log('INFO', 'cv_tag(%s)' % self.cv_tag)
        # load feature matrix
        offline_features = Feature.load_all(self.config.get('DIRECTORY', 'feature_pt'),
                                            self.config.get('FEATURE', 'feature_selected').split(),
                                            self.config.get('MODEL', 'offline_rawset_name'),
                                            self.config.get('FEATURE', 'will_save'))
        # load labels
        offline_labels = DataUtil.load_vector('%s/%s.label' % (self.config.get('DIRECTORY', 'label_pt'),
                                                               self.config.get('MODEL', 'offline_rawset_name')),
                                              True)
        # generate index file
        if '' == self.cv_tag:
            self.cv_tag = self.out_tag
            self.__generate_index(offline_features.shape[0])
        # cross validation
        offline_valid_preds_all = [0.] * offline_features.shape[0]
        offline_test_preds_all = [0.] * offline_features.shape[0]
        for fold_id in range(self.cv_num):
            LogUtil.log('INFO', 'cross validation fold_id(%d) begin' % fold_id)

            # generate training data set
            offline_train_pos_rate = float(self.config.get('MODEL', 'train_pos_rate'))
            offline_train_indexs_fp = '%s/cv_tag%s_n%d_f%d_train.%s.index' % (self.config.get('DIRECTORY', 'index_pt'),
                                                                              self.cv_tag,
                                                                              self.cv_num,
                                                                              fold_id,
                                                                              self.config.get('MODEL',
                                                                                              'offline_rawset_name'))
            offline_train_indexs = DataUtil.load_vector(offline_train_indexs_fp, 'int')
            offline_train_features, offline_train_labels, offline_train_balanced_indexs = \
                CrossValidation.__generate_data(offline_train_indexs,
                                                offline_labels,
                                                offline_features,
                                                offline_train_pos_rate)
            LogUtil.log('INFO', 'offline train data generation done')

            # generate validation data set
            offline_valid_pos_rate = float(self.config.get('MODEL', 'valid_pos_rate'))
            offline_valid_indexs_fp = '%s/cv_tag%s_n%d_f%d_valid.%s.index' % (self.config.get('DIRECTORY', 'index_pt'),
                                                                              self.cv_tag,
                                                                              self.cv_num,
                                                                              fold_id,
                                                                              self.config.get('MODEL',
                                                                                              'offline_rawset_name'))
            offline_valid_indexs = DataUtil.load_vector(offline_valid_indexs_fp, 'int')
            offline_valid_features, offline_valid_labels, offline_valid_balanced_indexs = \
                CrossValidation.__generate_data(offline_valid_indexs,
                                                offline_labels,
                                                offline_features,
                                                offline_valid_pos_rate)
            LogUtil.log('INFO', 'offline valid data generation done')

            # generate test data set
            offline_test_pos_rate = float(self.config.get('MODEL', 'test_pos_rate'))
            offline_test_indexs_fp = '%s/cv_tag%s_n%d_f%d_test.%s.index' % (self.config.get('DIRECTORY', 'index_pt'),
                                                                            self.cv_tag,
                                                                            self.cv_num,
                                                                            fold_id,
                                                                            self.config.get('MODEL',
                                                                                            'offline_rawset_name'))
            offline_test_indexs = DataUtil.load_vector(offline_test_indexs_fp, 'int')
            offline_test_features, offline_test_labels, offline_test_balanced_indexs = \
                CrossValidation.__generate_data(offline_test_indexs,
                                                offline_labels,
                                                offline_features,
                                                offline_test_pos_rate)
            LogUtil.log('INFO', 'offline test data generation done')

            model = Model.new(self.config.get('MODEL', 'model_name'), self.config)
            model_fp = self.config.get('DIRECTORY', 'model_pt') + '/cv_n%d_f%d.%s.model' % \
                                                                  (self.cv_num,
                                                                   fold_id,
                                                                   self.config.get('MODEL', 'model_name'))
            model.save(model_fp)
            offline_train_preds, offline_valid_preds, offline_test_preds = model.fit(offline_train_features,
                                                                                     offline_train_labels,
                                                                                     offline_valid_features,
                                                                                     offline_valid_labels,
                                                                                     offline_test_features,
                                                                                     offline_test_labels)
            offline_train_score = Evaluator.evaluate(self.config.get('MODEL', 'evaluator_name'),
                                                     offline_train_labels,
                                                     offline_train_preds)
            offline_valid_score = Evaluator.evaluate(self.config.get('MODEL', 'evaluator_name'),
                                                     offline_valid_labels,
                                                     offline_valid_preds)
            offline_test_score = Evaluator.evaluate(self.config.get('MODEL', 'evaluator_name'),
                                                    offline_test_labels,
                                                    offline_test_preds)
            score_fp = '%s/%s.score' % (self.config.get('DIRECTORY', 'score_pt'), 'cv')
            score_file = open(score_fp, 'a')
            score_file.write('fold:%d\ttrain:%s\tvalid:%s\ttest:%s\n' % (fold_id,
                                                                         offline_train_score,
                                                                         offline_valid_score,
                                                                         offline_test_score))
            score_file.close()
            # merge prediction results
            for index in range(len(offline_valid_balanced_indexs)):
                offline_valid_preds_all[offline_valid_balanced_indexs[index]] = offline_valid_preds[index]
#.........这里部分代码省略.........
开发者ID:liuzongquan,项目名称:kaggle-quora-question-pairs,代码行数:103,代码来源:runner.py


注:本文中的feature.Feature.load_all方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。