当前位置: 首页>>代码示例>>Python>>正文


Python FaultSemblance.semblanceNumDen方法代码示例

本文整理汇总了Python中fault.FaultSemblance.semblanceNumDen方法的典型用法代码示例。如果您正苦于以下问题:Python FaultSemblance.semblanceNumDen方法的具体用法?Python FaultSemblance.semblanceNumDen怎么用?Python FaultSemblance.semblanceNumDen使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在fault.FaultSemblance的用法示例。


在下文中一共展示了FaultSemblance.semblanceNumDen方法的10个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: goThin

# 需要导入模块: from fault import FaultSemblance [as 别名]
# 或者: from fault.FaultSemblance import semblanceNumDen [as 别名]
def goThin():
    s1, s2, g = getImage()
    g = slog(g)
    # plot2(s1,s2,g,title="log input")
    fse = FaultSemblance()
    g = fse.taper(10, g)
    for iter in range(1):
        p = fse.slopes(g)
        # p = zerofloat(len(p[0]),len(p))
        sn, sd = fse.semblanceNumDen(p, g)
        fsc = FaultScanner2(sigmaTheta, [sn, sd], smoother)
        f, t = fsc.scan(-15, 15)
        # plot2(s1,s2,g,f,gmin=0,gmax=1,title="fault likelihood")
        # plot2(s1,s2,g,t,title="fault dip (degrees)")
        fs = copy(f)
        RecursiveGaussianFilter(1.0).apply00(fs, fs)
        # plot2(s1,s2,g,fs,gmin=0,gmax=1,title="fault likelihood smoothed")
        plot2(s1, s2, g, fs, gmin=0.5, gmax=1, gmap=jetr, label="Fault likelihood")
        ft, tt = fsc.thin([f, t])
        # plot2(s1,s2,g,ft,gmin=0,gmax=1,title="fault likelihood thinned")
        # plot2(s1,s2,g,tt,title="fault dip (degrees) thinned")
        plot2(s1, s2, g, ft, gmin=0.5, gmax=1, gmap=jetr, label="Fault likelihood", png="flt")
        plot2(s1, s2, g, tt, gmap=bwrn, label="Fault dip (degrees)", png="ftt")
        g = fsc.smooth(8, p, ft, g)
        # plot2(s1,s2,g,title="input smoothed")
        plot2(s1, s2, g, label="Log amplitude", png="gs")
开发者ID:BKJackson,项目名称:idh,代码行数:28,代码来源:fd2slide.py

示例2: goShifts

# 需要导入模块: from fault import FaultSemblance [as 别名]
# 或者: from fault.FaultSemblance import semblanceNumDen [as 别名]
def goShifts():
  s1,s2,g = getImage()
  g = slog(g)
  #plot2(s1,s2,g,title="log input")
  fse = FaultSemblance()
  g = fse.taper(10,g)
  p = fse.slopes(g)
  sn,sd = fse.semblanceNumDen(p,g)
  fsc = FaultScanner2(sigmaTheta,[sn,sd],smoother)
  f,t = fsc.scan(-15,15)
  shiftMin,shiftMax = -20,20
  faults = fsc.findFaults([f,t],shiftMax-shiftMin);
  ff = faults.getLikelihoods()
  plot2(s1,s2,g,ff,gmin=0,gmax=1,gmap=jetr,label="Fault likelihood",png="flg")
  g = fsc.smooth(4,p,ff,g)
  plot2(s1,s2,g,ff,gmin=0,gmax=1,gmap=jetr,label="Fault likelihood",png="flgs")
  plot2(s1,s2,g,label="Log amplitude",png="gs")
  p = fse.slopes(g)
  faults.findShifts(g,p,shiftMin,shiftMax)
  faults.clean()
  s = faults.getShifts()
  s = mul(s1.delta*1000.0,s)
  s = neg(s)
  print "s min =",min(s)," max =",max(s)
  plot2(s1,s2,g,s,gmin=0,gmax=28,gmap=jetr,
        label="Vertical component of throw (ms)",png="fs")
  plot2(s1,s2,g,s,gmin=0,gmax=15,gmap=jetr,
        label="Vertical component of throw (ms)",png="fs15")
开发者ID:BKJackson,项目名称:idh,代码行数:30,代码来源:fd2print.py

示例3: goShifts

# 需要导入模块: from fault import FaultSemblance [as 别名]
# 或者: from fault.FaultSemblance import semblanceNumDen [as 别名]
def goShifts():
    s1, s2, g = getImage()
    g = slog(g)
    plot2(s1, s2, g, title="log input")
    fse = FaultSemblance()
    g = fse.taper(10, g)
    p = fse.slopes(g)
    sn, sd = fse.semblanceNumDen(p, g)
    fsc = FaultScanner2(sigmaTheta, [sn, sd], smoother)
    f, t = fsc.scan(-15, 15)
    # plot2(s1,s2,g,f,gmin=0,gmax=1,title="fault likelihood")
    # ff,tt = fsc.thin([f,t])
    # plot2(s1,s2,g,ff,gmin=0,gmax=1,title="fault likelihood")
    shiftMin, shiftMax = -20, 20
    faults = fsc.findFaults([f, t], shiftMax - shiftMin)
    ff = faults.getLikelihoods()
    # plot2(s1,s2,g,ff,gmin=0,gmax=1,title="fault likelihood")
    # plot2(s1,s2,g,ff,gmin=0,gmax=1,label="Fault likelihood",png="flg")
    g = fsc.smooth(4, p, ff, g)
    # plot2(s1,s2,g,ff,gmin=0,gmax=1,title="input smoothed")
    # plot2(s1,s2,g,ff,gmin=0,gmax=1,label="Fault likelihood",png="flgs")
    plot2(s1, s2, g, label="Log amplitude", png="gs")
    p = fse.slopes(g)
    faults.findShifts(g, p, shiftMin, shiftMax)
    faults.clean()
    s = faults.getShifts()
    s = mul(s1.delta * 1000.0, s)
    print "s min =", min(s), " max =", max(s)
开发者ID:BKJackson,项目名称:idh,代码行数:30,代码来源:fd2slide.py

示例4: goShifts

# 需要导入模块: from fault import FaultSemblance [as 别名]
# 或者: from fault.FaultSemblance import semblanceNumDen [as 别名]
def goShifts():
  s1,s2,g = getImage()
  g = slog(g)
  plot2(s1,s2,g,title="log input")
  fse = FaultSemblance()
  g = fse.taper(10,g)
  p = fse.slopes(g)
  sn,sd = fse.semblanceNumDen(p,g)
  fsc = FaultScanner2(sigmaTheta,[sn,sd],smoother)
  f,t = fsc.scan(-15,15)
  plot2(s1,s2,g,f,gmin=0,gmax=1,title="fault likelihood")
  #ff,tt = fsc.thin([f,t])
  #plot2(s1,s2,g,ff,gmin=0,gmax=1,title="fault likelihood")
  shiftMin,shiftMax = -20,20
  faults = fsc.findFaults([f,t],shiftMax-shiftMin);
  ff = faults.getLikelihoods()
  plot2(s1,s2,g,ff,gmin=0,gmax=1,title="fault likelihood")
  g = fsc.smooth(4,p,ff,g)
  plot2(s1,s2,g,ff,gmin=0,gmax=1,title="input smoothed")
  p = fse.slopes(g)
  faults.findShifts(g,p,shiftMin,shiftMax)
  faults.clean()
  s = faults.getShifts()
  print "s min =",min(s)," max =",max(s)
  plot2(s1,s2,g,s,gmin=-8,gmax=8,title="fault throws")
开发者ID:eliasarias95,项目名称:idh,代码行数:27,代码来源:fd2.py

示例5: goAlign

# 需要导入模块: from fault import FaultSemblance [as 别名]
# 或者: from fault.FaultSemblance import semblanceNumDen [as 别名]
def goAlign():
  s1,s2,g = getImage()
  g = slog(g)
  n1,n2 = len(g[0]),len(g)
  fse = FaultSemblance()
  p = fse.slopes(g)
  ref = RecursiveExponentialFilter(4)
  sn,sd = fse.semblanceNumDen(p,g)
  ref.apply1(sn,sn)
  ref.apply1(sd,sd)
  s = fse.semblanceFromNumDen(sn,sd)
  plot2(s1,s2,g,s,gmin=0,gmax=1,title="semblance with alignment")
  p = zerofloat(n1,n2) # semblance with zero slopes
  sn,sd = fse.semblanceNumDen(p,g)
  ref.apply1(sn,sn)
  ref.apply1(sd,sd)
  s = fse.semblanceFromNumDen(sn,sd)
  plot2(s1,s2,g,s,gmin=0,gmax=1,title="semblance without alignment")
开发者ID:eliasarias95,项目名称:idh,代码行数:20,代码来源:fd2.py

示例6: goScan

# 需要导入模块: from fault import FaultSemblance [as 别名]
# 或者: from fault.FaultSemblance import semblanceNumDen [as 别名]
def goScan():
  s1,s2,g = getImage()
  g = slog(g)
  fse = FaultSemblance()
  g = fse.taper(10,g)
  p = fse.slopes(g)
  sn,sd = fse.semblanceNumDen(p,g)
  fsc = FaultScanner2(sigmaTheta,[sn,sd])
  st = Sampling(31,1.0,-15.0)
  for theta in st.values:
    f = fsc.likelihood(theta)
    plot2(s1,s2,g,f,gmin=0,gmax=1,title="theta = "+str(int(theta)))
  tmin,tmax = st.first,st.last
  f,t = fsc.scan(tmin,tmax)
  plot2(s1,s2,g,f,gmin=0,gmax=1,title="fault likelihood")
  plot2(s1,s2,g,t,gmin=tmin,gmax=tmax,title="fault dip (degrees)")
开发者ID:eliasarias95,项目名称:idh,代码行数:18,代码来源:fd2.py

示例7: goScan

# 需要导入模块: from fault import FaultSemblance [as 别名]
# 或者: from fault.FaultSemblance import semblanceNumDen [as 别名]
def goScan():
  s1,s2,g = getImage()
  g = slog(g)
  fse = FaultSemblance()
  g = fse.taper(10,g)
  p = fse.slopes(g)
  sn,sd = fse.semblanceNumDen(p,g)
  fsc = FaultScanner2(sigmaTheta,[sn,sd])
  st = Sampling(31,1.0,-15.0)
  for theta in st.values:
    f = fsc.likelihood(theta)
    png = "fl"+str(int(theta))
    plot2(s1,s2,g,f,gmin=0,gmax=1,gmap=jetr,label="Fault likelihood",png=png)
  tmin,tmax = st.first,st.last
  f,t = fsc.scan(tmin,tmax)
  plot2(s1,s2,g,f,gmin=0,gmax=1,gmap=jetr,label="Fault likelihood",png="fl")
开发者ID:yongmayer,项目名称:idh,代码行数:18,代码来源:fd2print.py

示例8: goScan

# 需要导入模块: from fault import FaultSemblance [as 别名]
# 或者: from fault.FaultSemblance import semblanceNumDen [as 别名]
def goScan():
  s1,s2,g = getImage()
  g = slog(g)
  fse = FaultSemblance()
  g = fse.taper(10,g)
  #p = fse.slopes(g)
  p = getSlopes(g)
  sn,sd = fse.semblanceNumDen(p,g)
  fsc = FaultScanner2(sigmaTheta,[sn,sd],FaultScanner2.Smoother.FFT)
  st = Sampling(25,2.0,-25.0)
  for theta in st.values:
    f = fsc.likelihood(theta)
    plot2(s1,s2,g,f,gmin=0.2,gmax=0.7,gmap=jetr,
      title="theta = "+str(int(theta)))
  tmin,tmax = st.first,st.last
  f,t = fsc.scan(tmin,tmax)
  plot2(s1,s2,g,f,gmin=0.2,gmax=0.7,gmap=jetr,title="fault likelihood")
开发者ID:BKJackson,项目名称:idh,代码行数:19,代码来源:fst2.py

示例9: goSemblance

# 需要导入模块: from fault import FaultSemblance [as 别名]
# 或者: from fault.FaultSemblance import semblanceNumDen [as 别名]
def goSemblance():
  s1,s2,g = getImage()
  g = slog(g)
  fse = FaultSemblance()
  g = fse.taper(10,g)
  p = fse.slopes(g)
  sn0,sd0 = fse.semblanceNumDen(p,g)
  print "semblances for different vertical smoothings:"
  for sigma in [0,2,4,8]:
    ref = RecursiveExponentialFilter(sigma)
    sn = copy(sn0)
    sd = copy(sd0)
    ref.apply1(sn,sn)
    ref.apply1(sd,sd)
    s = fse.semblanceFromNumDen(sn,sd)
    print "sigma =",sigma," s min =",min(s)," max =",max(s)
    title = "semblance: sigma = "+str(sigma)
    plot2(s1,s2,g,s,gmin=0,gmax=1,title=title)
开发者ID:eliasarias95,项目名称:idh,代码行数:20,代码来源:fd2.py

示例10: goThin

# 需要导入模块: from fault import FaultSemblance [as 别名]
# 或者: from fault.FaultSemblance import semblanceNumDen [as 别名]
def goThin():
  s1,s2,g = getImage()
  plot2(s1,s2,g,title="input")
  g = slog(mul(2.0,g))
  plot2(s1,s2,g,title="log input")
  fse = FaultSemblance()
  g = fse.taper(10,g)
  for iter in range(1):
    #p = fse.slopes(g)
    p = getSlopes(g)
    #p = zerofloat(len(p[0]),len(p))
    sn,sd = fse.semblanceNumDen(p,g)
    fsc = FaultScanner2(sigmaTheta,[sn,sd],smoother)
    f,t = fsc.scan(-25,25)
    plot2(s1,s2,g,f,gmin=0,gmax=1,title="fault likelihood")
    #plot2(s1,s2,g,t,title="fault dip (degrees)")
    ft,tt = fsc.thin([f,t])
    plot2(s1,s2,g,ft,gmin=0,gmax=1,title="fault likelihood thinned")
    #plot2(s1,s2,g,tt,title="fault dip (degrees) thinned")
    g = fsc.smooth(16,p,ft,g)
    plot2(s1,s2,g,title="input smoothed")
开发者ID:BKJackson,项目名称:idh,代码行数:23,代码来源:fst2.py


注:本文中的fault.FaultSemblance.semblanceNumDen方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。