当前位置: 首页>>代码示例>>Python>>正文


Python JobQueue._debug方法代码示例

本文整理汇总了Python中fabric.job_queue.JobQueue._debug方法的典型用法代码示例。如果您正苦于以下问题:Python JobQueue._debug方法的具体用法?Python JobQueue._debug怎么用?Python JobQueue._debug使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在fabric.job_queue.JobQueue的用法示例。


在下文中一共展示了JobQueue._debug方法的5个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: execute

# 需要导入模块: from fabric.job_queue import JobQueue [as 别名]
# 或者: from fabric.job_queue.JobQueue import _debug [as 别名]
def execute(task, *args, **kwargs):
    """
    Execute ``task`` (callable or name), honoring host/role decorators, etc.

    ``task`` may be an actual callable object, or it may be a registered task
    name, which is used to look up a callable just as if the name had been
    given on the command line (including :ref:`namespaced tasks <namespaces>`,
    e.g. ``"deploy.migrate"``.

    The task will then be executed once per host in its host list, which is
    (again) assembled in the same manner as CLI-specified tasks: drawing from
    :option:`-H`, :ref:`env.hosts <hosts>`, the `~fabric.decorators.hosts` or
    `~fabric.decorators.roles` decorators, and so forth.

    ``host``, ``hosts``, ``role``, ``roles`` and ``exclude_hosts`` kwargs will
    be stripped out of the final call, and used to set the task's host list, as
    if they had been specified on the command line like e.g. ``fab
    taskname:host=hostname``.

    Any other arguments or keyword arguments will be passed verbatim into
    ``task`` (the function itself -- not the ``@task`` decorator wrapping your
    function!) when it is called, so ``execute(mytask, 'arg1',
    kwarg1='value')`` will (once per host) invoke ``mytask('arg1',
    kwarg1='value')``.

    :returns:
        a dictionary mapping host strings to the given task's return value for
        that host's execution run. For example, ``execute(foo, hosts=['a',
        'b'])`` might return ``{'a': None, 'b': 'bar'}`` if ``foo`` returned
        nothing on host `a` but returned ``'bar'`` on host `b`.

        In situations where a task execution fails for a given host but overall
        progress does not abort (such as when :ref:`env.skip_bad_hosts
        <skip-bad-hosts>` is True) the return value for that host will be the
        error object or message.

    .. seealso::
        :ref:`The execute usage docs <execute>`, for an expanded explanation
        and some examples.

    .. versionadded:: 1.3
    .. versionchanged:: 1.4
        Added the return value mapping; previously this function had no defined
        return value.
    """
    my_env = {'clean_revert': True}
    results = {}
    # Obtain task
    is_callable = callable(task)
    if not (is_callable or _is_task(task)):
        # Assume string, set env.command to it
        my_env['command'] = task
        task = crawl(task, state.commands)
        if task is None:
            msg = "%r is not callable or a valid task name" % (my_env['command'],)
            if state.env.get('skip_unknown_tasks', False):
                warn(msg)
                return
            else:
                abort(msg)
    # Set env.command if we were given a real function or callable task obj
    else:
        dunder_name = getattr(task, '__name__', None)
        my_env['command'] = getattr(task, 'name', dunder_name)
    # Normalize to Task instance if we ended up with a regular callable
    if not _is_task(task):
        task = WrappedCallableTask(task)
    # Filter out hosts/roles kwargs
    new_kwargs, hosts, roles, exclude_hosts = parse_kwargs(kwargs)
    # Set up host list
    my_env['all_hosts'], my_env['effective_roles'] = task.get_hosts_and_effective_roles(hosts, roles,
                                                                                        exclude_hosts, state.env)

    parallel = requires_parallel(task)
    if parallel:
        # Import multiprocessing if needed, erroring out usefully
        # if it can't.
        try:
            import multiprocessing
        except ImportError:
            import traceback
            tb = traceback.format_exc()
            abort(tb + """
    At least one task needs to be run in parallel, but the
    multiprocessing module cannot be imported (see above
    traceback.) Please make sure the module is installed
    or that the above ImportError is fixed.""")
    else:
        multiprocessing = None

    # Get pool size for this task
    pool_size = task.get_pool_size(my_env['all_hosts'], state.env.pool_size)
    # Set up job queue in case parallel is needed
    queue = multiprocessing.Queue() if parallel else None
    jobs = JobQueue(pool_size, queue)
    if state.output.debug:
        jobs._debug = True

    # Call on host list
    if my_env['all_hosts']:
#.........这里部分代码省略.........
开发者ID:kstateome,项目名称:fabric,代码行数:103,代码来源:tasks.py

示例2: execute

# 需要导入模块: from fabric.job_queue import JobQueue [as 别名]
# 或者: from fabric.job_queue.JobQueue import _debug [as 别名]
def execute(task, *args, **kwargs):
    """
    Execute ``task`` (callable or name), honoring host/role decorators, etc.

    ``task`` may be an actual callable object, or it may be a registered task
    name, which is used to look up a callable just as if the name had been
    given on the command line (including :ref:`namespaced tasks <namespaces>`,
    e.g. ``"deploy.migrate"``.

    The task will then be executed once per host in its host list, which is
    (again) assembled in the same manner as CLI-specified tasks: drawing from
    :option:`-H`, :ref:`env.hosts <hosts>`, the `~fabric.decorators.hosts` or
    `~fabric.decorators.roles` decorators, and so forth.

    ``host``, ``hosts``, ``role``, ``roles`` and ``exclude_hosts`` kwargs will
    be stripped out of the final call, and used to set the task's host list, as
    if they had been specified on the command line like e.g. ``fab
    taskname:host=hostname``.

    Any other arguments or keyword arguments will be passed verbatim into
    ``task`` when it is called, so ``execute(mytask, 'arg1', kwarg1='value')``
    will (once per host) invoke ``mytask('arg1', kwarg1='value')``.

    .. seealso::
        :ref:`The execute usage docs <execute>`, for an expanded explanation
        and some examples.

    .. versionadded:: 1.3
    """
    my_env = {}
    # Obtain task
    if not callable(task):
        # Assume string, set env.command to it
        my_env["command"] = task
        task = crawl(task, state.commands)
        if task is None:
            abort("%r is not callable or a valid task name" % (task,))
    # Set env.command if we were given a real function or callable task obj
    else:
        dunder_name = getattr(task, "__name__", None)
        my_env["command"] = getattr(task, "name", dunder_name)
    # Normalize to Task instance
    if not hasattr(task, "run"):
        task = WrappedCallableTask(task)
    # Filter out hosts/roles kwargs
    new_kwargs, hosts, roles, exclude_hosts = parse_kwargs(kwargs)
    # Set up host list
    my_env["all_hosts"] = task.get_hosts(hosts, roles, exclude_hosts, state.env)

    # Get pool size for this task
    pool_size = task.get_pool_size(my_env["all_hosts"], state.env.pool_size)
    # Set up job queue in case parallel is needed
    jobs = JobQueue(pool_size)
    if state.output.debug:
        jobs._debug = True

    # Call on host list
    if my_env["all_hosts"]:
        for host in my_env["all_hosts"]:
            # Log to stdout
            if state.output.running and not hasattr(task, "return_value"):
                print ("[%s] Executing task '%s'" % (host, my_env["command"]))
            # Create per-run env with connection settings
            local_env = to_dict(host)
            local_env.update(my_env)
            state.env.update(local_env)
            # Handle parallel execution
            if requires_parallel(task):
                # Import multiprocessing if needed, erroring out usefully
                # if it can't.
                try:
                    import multiprocessing
                except ImportError, e:
                    msg = "At least one task needs to be run in parallel, but the\nmultiprocessing module cannot be imported:"
                    msg += "\n\n\t%s\n\n" % e
                    msg += "Please make sure the module is installed or that the above ImportError is\nfixed."
                    abort(msg)

                # Wrap in another callable that nukes the child's cached
                # connection object, if needed, to prevent shared-socket
                # problems.
                def inner(*args, **kwargs):
                    key = normalize_to_string(state.env.host_string)
                    state.connections.pop(key, "")
                    task.run(*args, **kwargs)

                # Stuff into Process wrapper
                p = multiprocessing.Process(target=inner, args=args, kwargs=new_kwargs)
                # Name/id is host string
                p.name = local_env["host_string"]
                # Add to queue
                jobs.append(p)
            # Handle serial execution
            else:
                task.run(*args, **new_kwargs)

        # If running in parallel, block until job queue is emptied
        if jobs:
            jobs.close()
            exitcodes = jobs.run()
#.........这里部分代码省略.........
开发者ID:sigman78,项目名称:fabric,代码行数:103,代码来源:tasks.py

示例3: execute

# 需要导入模块: from fabric.job_queue import JobQueue [as 别名]
# 或者: from fabric.job_queue.JobQueue import _debug [as 别名]
def execute(task, *args, **kwargs):
    """
    Execute ``task`` (callable or name), honoring host/role decorators, etc.

    ``task`` may be an actual callable object, or it may be a registered task
    name, which is used to look up a callable just as if the name had been
    given on the command line (including :ref:`namespaced tasks <namespaces>`,
    e.g. ``"deploy.migrate"``.

    The task will then be executed once per host in its host list, which is
    (again) assembled in the same manner as CLI-specified tasks: drawing from
    :option:`-H`, :ref:`env.hosts <hosts>`, the `~fabric.decorators.hosts` or
    `~fabric.decorators.roles` decorators, and so forth.

    ``host``, ``hosts``, ``role``, ``roles`` and ``exclude_hosts`` kwargs will
    be stripped out of the final call, and used to set the task's host list, as
    if they had been specified on the command line like e.g. ``fab
    taskname:host=hostname``.

    Any other arguments or keyword arguments will be passed verbatim into
    ``task`` when it is called, so ``execute(mytask, 'arg1', kwarg1='value')``
    will (once per host) invoke ``mytask('arg1', kwarg1='value')``.

    .. seealso::
        :ref:`The execute usage docs <execute>`, for an expanded explanation
        and some examples.

    .. versionadded:: 1.3
    """
    my_env = {}
    # Obtain task
    if not callable(task):
        # Assume string, set env.command to it
        my_env['command'] = task
        task = crawl(task, state.commands)
        if task is None:
            abort("%r is not callable or a valid task name" % (task,))
    # Set env.command if we were given a real function or callable task obj
    else:
        dunder_name = getattr(task, '__name__', None)
        my_env['command'] = getattr(task, 'name', dunder_name)
    # Normalize to Task instance
    if not hasattr(task, 'run'):
        task = WrappedCallableTask(task)
    # Filter out hosts/roles kwargs
    new_kwargs, hosts, roles, exclude_hosts = parse_kwargs(kwargs)
    # Set up host list
    my_env['all_hosts'] = task.get_hosts(hosts, roles, exclude_hosts, state.env)

    # Get pool size for this task
    pool_size = task.get_pool_size(my_env['all_hosts'], state.env.pool_size)
    # Set up job queue in case parallel is needed
    jobs = JobQueue(pool_size)
    if state.output.debug:
        jobs._debug = True

    # Call on host list
    if my_env['all_hosts']:
        # Attempt to cycle on hosts, skipping if needed
        for host in my_env['all_hosts']:
            try:
                _execute(task, host, my_env, args, new_kwargs)
            except NetworkError, e:
                # Backwards compat test re: whether to use an exception or
                # abort
                if not state.env.use_exceptions_for['network']:
                    func = warn if state.env.skip_bad_hosts else abort
                    error(e.message, func=func, exception=e.wrapped)
                else:
                    raise

        # If running in parallel, block until job queue is emptied
        if jobs:
            jobs.close()
            exitcodes = jobs.run()
            # Abort if any children did not exit cleanly (fail-fast).
            # This prevents Fabric from continuing on to any other tasks.
            if any([x != 0 for x in exitcodes]):
                abort("One or more hosts failed while executing task '%s'" % (
                    my_env['command']
                ))
开发者ID:vimalg2,项目名称:fabric,代码行数:83,代码来源:tasks.py

示例4: executes

# 需要导入模块: from fabric.job_queue import JobQueue [as 别名]
# 或者: from fabric.job_queue.JobQueue import _debug [as 别名]
def executes(task, all_args, *args, **kwargs):
    """
    """
    hosts = [all_args[index].get('host', '') for index in xrange(len(all_args))]

    my_env = {'clean_revert': True}
    results = {}
    # Obtain task
    is_callable = callable(task)
    if not (is_callable or _is_task(task)):
        # Assume string, set env.command to it
        my_env['command'] = task
        task = crawl(task, state.commands)
        if task is None:
            msg = "%r is not callable or a valid task name" % (my_env['command'],)
            if state.env.get('skip_unknown_tasks', False):
                warn(msg)
                return
            else:
                abort(msg)
    # Set env.command if we were given a real function or callable task obj
    else:
        dunder_name = getattr(task, '__name__', None)
        my_env['command'] = getattr(task, 'name', dunder_name)
    # Normalize to Task instance if we ended up with a regular callable
    if not _is_task(task):
        task = WrappedCallableTask(task)

    my_env['all_hosts'] = hosts
    my_env['all_args'] = all_args

    parallel = requires_parallel(task)
    if parallel:
        # Import multiprocessing if needed, erroring out usefully
        # if it can't.
        try:
            import multiprocessing
        except ImportError:
            import traceback
            tb = traceback.format_exc()
            abort(tb + """
    At least one task needs to be run in parallel, but the
    multiprocessing module cannot be imported (see above
    traceback.) Please make sure the module is installed
    or that the above ImportError is fixed.""")
    else:
        multiprocessing = None

    # Get pool size for this task
    pool_size = task.get_pool_size(my_env['all_hosts'], state.env.pool_size)
    # Set up job queue in case parallel is needed
    queue = multiprocessing.Queue() if parallel else None
    jobs = JobQueue(pool_size, queue)
    if state.output.debug:
        jobs._debug = True

    has_hosts = len(my_env['all_hosts']) > 0
    for index in xrange(len(my_env['all_args'])):
        host = my_env['all_args'][index].get('host', '')
        if has_hosts:
            host = my_env['all_hosts'][index]

        input_kwargs = my_env['all_args'][index]
        try:
            results[host] = _execute(
                task, host, my_env, args, input_kwargs, jobs, queue,
                multiprocessing
            )
        except NetworkError, e:
            results[host] = e
            # Backwards compat test re: whether to use an exception or
            # abort
            if not state.env.use_exceptions_for['network']:
                func = warn if state.env.skip_bad_hosts else abort
                error(e.message, func=func, exception=e.wrapped)
            else:
                raise

        # If requested, clear out connections here and not just at the end.
        if state.env.eagerly_disconnect:
            disconnect_all()
开发者ID:pagingio,项目名称:fabric,代码行数:83,代码来源:tasks.py

示例5: execute

# 需要导入模块: from fabric.job_queue import JobQueue [as 别名]
# 或者: from fabric.job_queue.JobQueue import _debug [as 别名]
def execute(task, *args, **kwargs):
    """
    Patched version of fabric's execute task with alternative error handling
    """
    my_env = {'clean_revert': True}
    results = {}
    # Obtain task
    is_callable = callable(task)
    if not (is_callable or _is_task(task)):
        # Assume string, set env.command to it
        my_env['command'] = task
        task = crawl(task, state.commands)
        if task is None:
            msg = "%r is not callable or a valid task name" % (
                my_env['command'],)
            if state.env.get('skip_unknown_tasks', False):
                warn(msg)
                return
            else:
                abort(msg)
    # Set env.command if we were given a real function or callable task obj
    else:
        dunder_name = getattr(task, '__name__', None)
        my_env['command'] = getattr(task, 'name', dunder_name)
    # Normalize to Task instance if we ended up with a regular callable
    if not _is_task(task):
        task = WrappedCallableTask(task)
    # Filter out hosts/roles kwargs
    new_kwargs, hosts, roles, exclude_hosts = parse_kwargs(kwargs)
    # Set up host list
    my_env['all_hosts'], my_env[
        'effective_roles'] = task.get_hosts_and_effective_roles(hosts, roles,
                                                                exclude_hosts,
                                                                state.env)

    parallel = requires_parallel(task)
    if parallel:
        # Import multiprocessing if needed, erroring out usefully
        # if it can't.
        try:
            import multiprocessing
        except ImportError:
            import traceback

            tb = traceback.format_exc()
            abort(tb + """
    At least one task needs to be run in parallel, but the
    multiprocessing module cannot be imported (see above
    traceback.) Please make sure the module is installed
    or that the above ImportError is fixed.""")
    else:
        multiprocessing = None

    # Get pool size for this task
    pool_size = task.get_pool_size(my_env['all_hosts'], state.env.pool_size)
    # Set up job queue in case parallel is needed
    queue = multiprocessing.Queue() if parallel else None
    jobs = JobQueue(pool_size, queue)
    if state.output.debug:
        jobs._debug = True

    # Call on host list
    if my_env['all_hosts']:
        # Attempt to cycle on hosts, skipping if needed
        for host in my_env['all_hosts']:
            try:
                results[host] = _execute(
                    task, host, my_env, args, new_kwargs, jobs, queue,
                    multiprocessing
                )
            except NetworkError, e:
                results[host] = e
                # Backwards compat test re: whether to use an exception or
                # abort
                func = warn if state.env.skip_bad_hosts or state.env.warn_only \
                    else abort
                error(e.message, func=func, exception=e.wrapped)
            except SystemExit, e:
                pass

            # If requested, clear out connections here and not just at the end.
            if state.env.eagerly_disconnect:
                disconnect_all()
开发者ID:amrutagokhale,项目名称:presto-admin,代码行数:85,代码来源:fabric_patches.py


注:本文中的fabric.job_queue.JobQueue._debug方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。