本文整理汇总了Python中expWorkbench.load_results函数的典型用法代码示例。如果您正苦于以下问题:Python load_results函数的具体用法?Python load_results怎么用?Python load_results使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了load_results函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: test_kde_over_time
def test_kde_over_time():
results = load_results(r'./../data/eng_trans_100.cPickle', zipped=False)
# kde_over_time(results, log=False)
# kde_over_time(results, log=True)
kde_over_time(results, group_by='policy', grouping_specifiers=['no policy', 'adaptive policy'])
plt.show()
示例2: test_get_rf_feature_scores
def test_get_rf_feature_scores(self):
fn = r'../data/1000 flu cases no policy.tar.gz'
results = load_results(fn)
def classify(data):
#get the output for deceased population
result = data['deceased population region 1']
#make an empty array of length equal to number of cases
classes = np.zeros(result.shape[0])
#if deceased population is higher then 1.000.000 people, classify as 1
classes[result[:, -1] > 1000000] = 1
return classes
scores, forest = fs.get_rf_feature_scores(results, classify,
random_state=10)
self.assertEqual(len(scores), len(results[0].dtype.fields))
self.assertTrue(isinstance(forest, RandomForestClassifier))
ooi = 'nr deaths'
results[1][ooi] = results[1]['deceased population region 1'][:,-1]
scores, forest = fs.get_rf_feature_scores(results, ooi,
random_state=10)
self.assertEqual(len(scores), len(results[0].dtype.fields))
self.assertTrue(isinstance(forest, RandomForestRegressor))
示例3: test_pairs_density
def test_pairs_density():
results = load_results(r'..\data\eng_trans_100.cPickle', zipped=False)
# pairs_density(results)
# pairs_density(results, colormap='binary')
pairs_density(results, group_by='policy', grouping_specifiers=['no policy'])
plt.show()
示例4: test_envelopes3d_group_by
def test_envelopes3d_group_by():
results = expWorkbench.load_results(r'1000 flu cases.cPickle')
envelopes3d_group_by(results,
outcome='infected fraction R1',
groupBy="normal interregional contact rate",
logSpace=True)
示例5: test_get_univariate_feature_scores
def test_get_univariate_feature_scores(self):
fn = r'../data/1000 flu cases no policy.tar.gz'
results = load_results(fn)
def classify(data):
#get the output for deceased population
result = data['deceased population region 1']
#make an empty array of length equal to number of cases
classes = np.zeros(result.shape[0])
#if deceased population is higher then 1.000.000 people, classify as 1
classes[result[:, -1] > 1000000] = 1
return classes
# f classify
scores = fs.get_univariate_feature_scores(results, classify)
self.assertEqual(len(scores), len(results[0].dtype.fields))
# chi2
scores = fs.get_univariate_feature_scores(results, classify,
score_func='chi2')
self.assertEqual(len(scores), len(results[0].dtype.fields))
# f regression
ooi = 'nr deaths'
results[1][ooi] = results[1]['deceased population region 1'][:,-1]
scores = fs.get_univariate_feature_scores(results, ooi)
self.assertEqual(len(scores), len(results[0].dtype.fields))
示例6: test_prepare_outcomes
def test_prepare_outcomes(self):
fn = r'../data/1000 flu cases no policy.tar.gz'
results = load_results(fn)
# string type correct
ooi = 'nr deaths'
results[1][ooi] = results[1]['deceased population region 1'][:,-1]
y, categorical = fs._prepare_outcomes(results[1], ooi)
self.assertFalse(categorical)
self.assertTrue(len(y.shape)==1)
# string type not correct --> KeyError
with self.assertRaises(KeyError):
fs._prepare_outcomes(results[1], "non existing key")
# classify function correct
def classify(data):
result = data['deceased population region 1']
classes = np.zeros(result.shape[0])
classes[result[:, -1] > 1000000] = 1
return classes
y, categorical = fs._prepare_outcomes(results[1], classify)
self.assertTrue(categorical)
self.assertTrue(len(y.shape)==1)
# neither string nor classify function --> TypeError
with self.assertRaises(TypeError):
fs._prepare_outcomes(results[1], 1)
示例7: test_pairs_lines
def test_pairs_lines():
results = load_results(r'..\data\eng_trans_100.cPickle', zipped=False)
pairs_lines(results)
# set_fig_to_bw(pairs_lines(results)[0])
pairs_lines(results, group_by='policy')
# set_fig_to_bw(pairs_lines(results, group_by='policy')[0])
plt.show()
示例8: test_envelopes3d
def test_envelopes3d():
results = expWorkbench.load_results(r"1000 flu cases.cPickle")
exp, res = results
logical = exp["policy"] == "adaptive policy"
new_exp = exp[logical][0:100]
new_res = {}
for key, value in res.items():
new_res[key] = value[logical][0:100, :]
envelopes3d((new_exp, new_res), "infected fraction R1", logSpace=True)
示例9: test_pairs_scatter
def test_pairs_scatter():
results = load_results(r'..\data\eng_trans_100.cPickle', zipped=False)
pairs_scatter(results)
# set_fig_to_bw(pairs_scatter(results)[0])
pairs_scatter(results, group_by='policy',
grouping_specifiers='basic policy', legend=False)
# set_fig_to_bw(pairs_scatter(results, group_by='policy')[0])
pairs_scatter(results, group_by='policy',
grouping_specifiers=['no policy', 'adaptive policy'])
# set_fig_to_bw(pairs_scatter(results, group_by='policy', legend=False)[0])
plt.show()
示例10: test_multiple_densities
def test_multiple_densities():
results = load_results(r'..\data\eng_trans_100.cPickle', zipped=False)
# multiple_densities(results,
# outcome_to_show="total fraction new technologies",
# group_by="policy",
# points_in_time = [2000])
# multiple_densities(results,
# outcome_to_show="total fraction new technologies",
# group_by="policy",
# points_in_time = [2000, 2100])
# multiple_densities(results,
# outcome_to_show="total fraction new technologies",
# group_by="policy",
# points_in_time = [2000, 2020, 2100])
# multiple_densities(results,
# outcome_to_show="total fraction new technologies",
# group_by="policy",
# points_in_time = [2000, 2020, 2040, 2060])
# multiple_densities(results,
# outcome_to_show="total fraction new technologies",
# group_by="policy",
# points_in_time = [2020, 2040, 2060, 2080, 2100])
# multiple_densities(results,
# outcome_to_show="total fraction new technologies",
# group_by="policy",
# grouping_specifiers="no policy",
# points_in_time = [2000, 2020, 2040, 2060, 2080, 2100],
# plot_type=ENV_LIN,
# experiments_to_show=[1,2,10])
# multiple_densities(results,
# outcome_to_show="total fraction new technologies",
# group_by="policy",
# grouping_specifiers="no policy",
# points_in_time = [2000, 2020, 2040, 2060, 2080, 2100],
# plot_type=ENVELOPE,
# experiments_to_show=[1,2,10])
multiple_densities(results,
# group_by="policy",
# grouping_specifiers="no policy",
points_in_time = [2040, 2045, 2050, 2060,2070,2080],
plot_type=ENVELOPE,
density=KDE,
log=False
# experiments_to_show=[np.arange(0, 100, 20)]
)
plt.show()
示例11: test_group_results
def test_group_results():
results = load_results(r'./../data/eng_trans_100.cPickle', zipped=False)
experiments, outcomes = results
# test indices
grouping_specifiers = {'set1':np.arange(0,11),
'set2':np.arange(11,25),
'set3':np.arange(25,experiments.shape[0])}
groups = group_results(experiments, outcomes,
group_by='index',
grouping_specifiers=grouping_specifiers)
total_data = 0
for value in groups.values():
total_data += value[0].shape[0]
print experiments.shape[0], total_data
# test continuous parameter type
array = experiments['average planning and construction period T1']
grouping_specifiers = make_continuous_grouping_specifiers(array, nr_of_groups=5)
groups = group_results(experiments, outcomes,
group_by='average planning and construction period T1',
grouping_specifiers=grouping_specifiers)
total_data = 0
for value in groups.values():
total_data += value[0].shape[0]
print experiments.shape[0], total_data
# test integer type
array = experiments['seed PR T1']
grouping_specifiers = make_continuous_grouping_specifiers(array, nr_of_groups=10)
groups = group_results(experiments, outcomes,
group_by='seed PR T1',
grouping_specifiers=grouping_specifiers)
total_data = 0
for value in groups.values():
total_data += value[0].shape[0]
print experiments.shape[0], total_data
# test categorical type
grouping_specifiers = set(experiments["policy"])
groups = group_results(experiments, outcomes,
group_by='policy',
grouping_specifiers=grouping_specifiers)
total_data = 0
for value in groups.values():
total_data += value[0].shape[0]
print experiments.shape[0], total_data
示例12: classify
from expWorkbench import load_results
from analysis.prim import perform_prim, write_prim_to_stdout
from analysis.prim import show_boxes_individually
def classify(data):
result = data["total fraction new technologies"]
classes = np.zeros(result.shape[0])
classes[result[:, -1] > 0.8] = 1
return classes
if __name__ == "__main__":
results = load_results(r"CESUN_optimized_1000_new.cPickle")
experiments, results = results
logicalIndex = experiments["policy"] == "Optimized Adaptive Policy"
newExperiments = experiments[logicalIndex]
newResults = {}
for key, value in results.items():
newResults[key] = value[logicalIndex]
results = (newExperiments, newResults)
boxes = perform_prim(results, "total fraction new technologies", threshold=0.6, threshold_type=-1)
write_prim_to_stdout(boxes)
show_boxes_individually(boxes, results)
plt.show()
示例13: classify
ema_logging.log_to_stderr(level=ema_logging.INFO)
def classify(data):
#get the output for deceased population
result = data['deceased population region 1']
#make an empty array of length equal to number of cases
classes = np.zeros(result.shape[0])
#if deceased population is higher then 1.000.000 people, classify as 1
classes[result[:, -1] > 1000000] = 1
return classes
#load data
results = load_results(r'./data/1000 flu cases.bz2')
experiments, results = results
#extract results for 1 policy
logical = experiments['policy'] == 'no policy'
new_experiments = experiments[ logical ]
new_results = {}
for key, value in results.items():
new_results[key] = value[logical]
results = (new_experiments, new_results)
#perform prim on modified results tuple
prim = prim.Prim(results, classify, threshold=0.8, threshold_type=1)
box_1 = prim.find_box()
示例14: perform_loop_knockout
def perform_loop_knockout():
unique_edges = [['In Goods', 'lost'],
['loss unprofitable extraction capacity', 'decommissioning extraction capacity'],
['production', 'In Goods'],
['production', 'lost'],
['production', 'Supply'],
['Real Annual Demand', 'substitution losses'],
['Real Annual Demand', 'price elasticity of demand losses'],
['Real Annual Demand', 'desired extraction capacity'],
['Real Annual Demand', 'economic demand growth'],
['average recycling cost', 'relative market price'],
['recycling fraction', 'lost'],
['commissioning recycling capacity', 'Recycling Capacity Under Construction'],
['maximum amount recyclable', 'recycling fraction'],
['profitability recycling', 'planned recycling capacity'],
['relative market price', 'price elasticity of demand losses'],
['constrained desired recycling capacity', 'gap between desired and constrained recycling capacity'],
['profitability extraction', 'planned extraction capacity'],
['commissioning extraction capacity', 'Extraction Capacity Under Construction'],
['desired recycling', 'gap between desired and constrained recycling capacity'],
['Installed Recycling Capacity', 'decommissioning recycling capacity'],
['Installed Recycling Capacity', 'loss unprofitable recycling capacity'],
['average extraction costs', 'profitability extraction'],
['average extraction costs', 'relative attractiveness recycling']]
unique_cons_edges = [['recycling', 'recycling'],
['recycling', 'supply demand ratio'],
['decommissioning recycling capacity', 'recycling fraction'],
['returns to scale', 'relative attractiveness recycling'],
['shortage price effect', 'relative price last year'],
['shortage price effect', 'profitability extraction'],
['loss unprofitable extraction capacity', 'loss unprofitable extraction capacity'],
['production', 'recycling fraction'],
['production', 'constrained desired recycling capacity'],
['production', 'new cumulatively recycled'],
['production', 'effective fraction recycled of supplied'],
['loss unprofitable recycling capacity', 'recycling fraction'],
['average recycling cost', 'loss unprofitable recycling capacity'],
['recycling fraction', 'new cumulatively recycled'],
['substitution losses', 'supply demand ratio'],
['Installed Extraction Capacity', 'Extraction Capacity Under Construction'],
['Installed Extraction Capacity', 'commissioning extraction capacity'],
['Installed Recycling Capacity', 'Recycling Capacity Under Construction'],
['Installed Recycling Capacity', 'commissioning recycling capacity'],
['average extraction costs', 'profitability extraction']]
# CONSTRUCTING THE ENSEMBLE AND SAVING THE RESULTS
ema_logging.log_to_stderr(ema_logging.INFO)
results = load_results(r'base.cPickle')
# GETTING OUT THOSE BEHAVIOURS AND EXPERIMENT SETTINGS
# Indices of a number of examples, these will be looked at.
runs = [526,781,911,988,10,780,740,943,573,991]
VOI = 'relative market price'
results_of_interest = experiment_settings(results,runs,VOI)
cases_of_interest = experiments_to_cases(results_of_interest[0])
behaviour_int = results_of_interest[1][VOI]
# CONSTRUCTING INTERVALS OF ATOMIC BEHAVIOUR PATTERNS
ints = intervals(behaviour_int,False)
# GETTING OUT ONLY THOSE OF MAXIMUM LENGTH PER BEHAVIOUR
max_intervals = intervals_interest(ints)
# THIS HAS TO DO WITH THE MODEL FORMULATION OF THE SWITCHES/VALUES
double_list = [6,9,11,17,19]
indCons = len(unique_edges)
# for elem in unique_cons_edges:
# unique_edges.append(elem)
current = os.getcwd()
for beh_no in range(0,10):
# beh_no = 0 # Varies between 0 and 9, index style.
interval = max_intervals[beh_no]
rmp = behaviour_int[beh_no]
# rmp = rmp[interval[0]:interval[1]]
x = range(0,len(rmp))
fig = plt.figure()
ax = fig.add_subplot(111)
vensim.be_quiet()
# for loop_index in range(7,8):
for loop_index in range(1,len(unique_edges)+1):
if loop_index-indCons > 0:
model_location = current + r'\Models\Consecutive\Metals EMA.vpm'
elif loop_index == 0:
model_location = current + r'\Models\Base\Metals EMA.vpm'
else:
model_location = current + r'\Models\Switches\Metals EMA.vpm'
serie = run_interval(model_location,loop_index,
interval,'relative market price',
unique_edges,indCons,double_list,
cases_of_interest[beh_no])
#.........这里部分代码省略.........
示例15: test_lines3d
def test_lines3d():
results = expWorkbench.load_results(r'eng_trans_100.cPickle')
lines3d(results, outcomes=['installed capacity T1',
'installed capacity T2'])