当前位置: 首页>>代码示例>>Python>>正文


Python ETLUtils.select_fields方法代码示例

本文整理汇总了Python中etl.ETLUtils.select_fields方法的典型用法代码示例。如果您正苦于以下问题:Python ETLUtils.select_fields方法的具体用法?Python ETLUtils.select_fields怎么用?Python ETLUtils.select_fields使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在etl.ETLUtils的用法示例。


在下文中一共展示了ETLUtils.select_fields方法的7个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: prepare

# 需要导入模块: from etl import ETLUtils [as 别名]
# 或者: from etl.ETLUtils import select_fields [as 别名]
    def prepare(self):
        print('prepare: %s' % time.strftime("%Y/%d/%m-%H:%M:%S"))

        contextual_train_set =\
            ETLUtils.select_fields(self.headers, self.train_records)
        contextual_test_set =\
            ETLUtils.select_fields(self.headers, self.records_to_predict)

        ETLUtils.save_csv_file(
            self.csv_train_file, contextual_train_set, self.headers)
        ETLUtils.save_csv_file(
            self.csv_test_file, contextual_test_set, self.headers)

        print('Exported CSV and JSON files: %s'
              % time.strftime("%Y/%d/%m-%H:%M:%S"))

        csv_files = [
            self.csv_train_file,
            self.csv_test_file
        ]

        num_cols = len(self.headers)
        context_cols = num_cols
        print('num_cols', num_cols)
        # print('context_cols', context_cols)

        libfm_converter.csv_to_libfm(
            csv_files, 0, [1, 2], range(3, context_cols), ',', has_header=True,
            suffix='.no_context.libfm')
        libfm_converter.csv_to_libfm(
            csv_files, 0, [1, 2], [], ',', has_header=True,
            suffix='.context.libfm')

        print('Exported LibFM files: %s' % time.strftime("%Y/%d/%m-%H:%M:%S"))
开发者ID:bachlog,项目名称:yelp,代码行数:36,代码来源:context_top_n_runner.py

示例2: test_select_fields

# 需要导入模块: from etl import ETLUtils [as 别名]
# 或者: from etl.ETLUtils import select_fields [as 别名]
    def test_select_fields(self):

        select_fields = ['user_id', 'offering_id', 'overall_rating']
        result = ETLUtils.select_fields(select_fields, reviews_matrix_5)
        self.assertEqual(result, reviews_matrix_5_short)

        select_fields = ['user_id']
        result = ETLUtils.select_fields(select_fields, reviews_matrix_5_short)
        self.assertEqual(result, reviews_matrix_5_users)
开发者ID:antoine-tran,项目名称:yelp,代码行数:11,代码来源:test_etl_utils.py

示例3: full_cycle

# 需要导入模块: from etl import ETLUtils [as 别名]
# 或者: from etl.ETLUtils import select_fields [as 别名]
    def full_cycle(self, train_records, test_records, train_reviews, test_reviews):

        self.lda_based_context = LdaBasedContext(train_records, train_reviews)
        self.lda_based_context.get_context_rich_topics()

        print("Trained LDA Model: %s" % time.strftime("%Y/%d/%m-%H:%M:%S"))

        contextual_train_set = self.lda_based_context.find_contextual_topics(train_records)
        contextual_test_set = self.lda_based_context.find_contextual_topics(test_records)

        print("contextual test set size: %d" % len(contextual_test_set))

        self.build_headers()
        contextual_train_set = ETLUtils.select_fields(self.headers, contextual_train_set)
        contextual_test_set = ETLUtils.select_fields(self.headers, contextual_test_set)

        print("Exported contextual topics: %s" % time.strftime("%Y/%d/%m-%H:%M:%S"))

        return contextual_train_set, contextual_test_set
开发者ID:bachlog,项目名称:yelp,代码行数:21,代码来源:context_data_converter.py

示例4: load_data

# 需要导入模块: from etl import ETLUtils [as 别名]
# 或者: from etl.ETLUtils import select_fields [as 别名]
def load_data(json_file):
    records = ETLUtils.load_json_file(json_file)
    fields = ['user_id', 'business_id', 'stars']
    records = ETLUtils.select_fields(fields, records)

    # We rename the 'stars' field to 'overall_rating' to take advantage of the
    # function extractor.get_user_average_overall_rating
    for record in records:
        record['overall_rating'] = record.pop('stars')
        record['offering_id'] = record.pop('business_id')

    return records
开发者ID:antoine-tran,项目名称:yelp,代码行数:14,代码来源:basic_knn.py

示例5: main_converter

# 需要导入模块: from etl import ETLUtils [as 别名]
# 或者: from etl.ETLUtils import select_fields [as 别名]
def main_converter():

    csv_train_file = GENERATED_FOLDER + 'yelp_training_set_review_' + DATASET + 's_shuffled_train.csv'
    csv_test_file = GENERATED_FOLDER + 'records_to_predict_' + DATASET + '.csv'

    # ETLUtils.json_to_csv(TRAIN_RECORDS_FILE, csv_train_file, 'user_id', 'business_id', 'stars', False, True)
    # ETLUtils.json_to_csv(RECORDS_TO_PREDICT_FILE, csv_test_file, 'user_id', 'business_id', 'stars', False, True)

    headers = ['stars', 'user_id', 'business_id']
    train_records = ETLUtils.load_json_file(TRAIN_RECORDS_FILE)
    records_to_predict = ETLUtils.load_json_file(RECORDS_TO_PREDICT_FILE)
    train_records = ETLUtils.select_fields(headers, train_records)
    records_to_predict = ETLUtils.select_fields(headers, records_to_predict)

    ETLUtils.save_csv_file(csv_train_file, train_records, headers)
    ETLUtils.save_csv_file(csv_test_file, records_to_predict, headers)

    csv_files = [
        csv_train_file,
        csv_test_file
    ]

    csv_to_libfm(csv_files, 0, [1, 2], [], ',', has_header=True)
开发者ID:bachlog,项目名称:yelp,代码行数:25,代码来源:top_n_runner.py

示例6: pre_process_reviews

# 需要导入模块: from etl import ETLUtils [as 别名]
# 或者: from etl.ETLUtils import select_fields [as 别名]
def pre_process_reviews():
    """
    Returns a list of preprocessed reviews, where the reviews have been filtered
    to obtain only relevant data, have dropped any fields that are not useful,
    and also have additional fields that are handy to make calculations

    :return: a list of preprocessed reviews
    """
    reviews_file = '/Users/fpena/UCC/Thesis/datasets/yelp_phoenix_academic_dataset/yelp_academic_dataset_review.json'
    reviews = ETLUtils.load_json_file(reviews_file)

    select_fields = ['user_id', 'business_id', 'stars']
    reviews = ETLUtils.select_fields(select_fields, reviews)
    extract_fields(reviews)
    ETLUtils.drop_fields(['business_id', 'stars'], reviews)
    # reviews = load_json_file('/Users/fpena/tmp/filtered_reviews.json')
    reviews = clean_reviews(reviews)

    return reviews
开发者ID:antoine-tran,项目名称:yelp,代码行数:21,代码来源:yelp_phoenix_extractor.py

示例7: pre_process_reviews

# 需要导入模块: from etl import ETLUtils [as 别名]
# 或者: from etl.ETLUtils import select_fields [as 别名]
def pre_process_reviews():
    """
    Returns a list of preprocessed reviews, where the reviews have been filtered
    to obtain only relevant data, have dropped any fields that are not useful,
    and also have additional fields that are handy to make calculations

    :return: a list of preprocessed reviews
    """
    data_folder = '/Users/fpena/UCC/Thesis/datasets/TripAdvisor/Four-City/'
    review_file_path = data_folder + 'review.txt'
    # review_file_path = data_folder + 'review-short.json'
    reviews = ETLUtils.load_json_file(review_file_path)

    select_fields = ['ratings', 'author', 'offering_id']
    reviews = ETLUtils.select_fields(select_fields, reviews)
    extract_fields(reviews)
    ETLUtils.drop_fields(['author', 'ratings'], reviews)
    # reviews = load_json_file('/Users/fpena/tmp/filtered_reviews.json')
    # reviews = preflib_extractor.load_csv_file('/Users/fpena/UCC/Thesis/datasets/TripAdvisor/PrefLib/trip/CD-00001-00000001-copy.dat')
    reviews = clean_reviews(reviews)

    return reviews
开发者ID:antoine-tran,项目名称:yelp,代码行数:24,代码来源:extractor.py


注:本文中的etl.ETLUtils.select_fields方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。