当前位置: 首页>>代码示例>>Python>>正文


Python Error.norm_total_error方法代码示例

本文整理汇总了Python中error.Error.norm_total_error方法的典型用法代码示例。如果您正苦于以下问题:Python Error.norm_total_error方法的具体用法?Python Error.norm_total_error怎么用?Python Error.norm_total_error使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在error.Error的用法示例。


在下文中一共展示了Error.norm_total_error方法的4个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: testLogisticError

# 需要导入模块: from error import Error [as 别名]
# 或者: from error.Error import norm_total_error [as 别名]
def testLogisticError():
    k = 5

    data = Data(k, 0, 0)
    data.importDataFromMat()
    data.normalize()

    lg = LogisticLinearClassifier(0.03, 0.03, 576, k, data)
    err_train, miss_train, err_val, miss_val = lg.train(30)
    mis_fig = plt.figure()
    ax2 = mis_fig.add_subplot(111)
    ax2.plot(err_val, label="error (validation)")
    ax2.plot(err_train, label="error (training)")
    title = "std(val)=%f std(err)=%f" % (sp.std(err_val), sp.std(err_train))
    mis_fig.suptitle(title)
    ax2.set_ylabel("error")
    ax2.set_xlabel("epoch")
    plt.legend()

    mis_fig = plt.figure()
    ax2 = mis_fig.add_subplot(111)
    ax2.plot(miss_val, label="misclassification ratio (validation)")
    ax2.plot(miss_train, label="misclassification ratio (training)")
    mis_fig.suptitle(title)
    ax2.set_ylabel("misclassification ratio")
    ax2.set_xlabel("epoch")
    plt.legend()

    results, cat = lg.classify(data.test_left, data.test_right)
    lg.confusion_matrix(cat, data.test_cat.argmax(axis=0))

    err = Error()
    err, misclass = err.norm_total_error(results.T, data.test_cat, k)
    print "Error on the test set " + str(err)
    print "Misclassification ratio on the test set " + str(misclass)
开发者ID:quentinms,项目名称:PCML---Mini-Project,代码行数:37,代码来源:main.py

示例2: testSquaredError

# 需要导入模块: from error import Error [as 别名]
# 或者: from error.Error import norm_total_error [as 别名]
def testSquaredError():
    k = 5

    data = Data(k, 0, 0)
    data.importDataFromMat()
    data.normalize()

    sq = SquaredErrorLinearClassifier(2 ** 10, k)
    sq.train(data.train_left, data.train_right, data.train_cat)
    results, cat = sq.classify(data.test_left, data.test_right)
    sq.confusion_matrix(cat, data.test_cat.argmax(axis=0))

    err = Error()
    err, misclass = err.norm_total_error(results.T, data.test_cat, k)
    print "Error on the test set " + str(err)
    print "Misclassification ratio on the test set " + str(misclass)
开发者ID:quentinms,项目名称:PCML---Mini-Project,代码行数:18,代码来源:main.py

示例3: __init__

# 需要导入模块: from error import Error [as 别名]
# 或者: from error.Error import norm_total_error [as 别名]
class Test:

	def __init__(self, mlp, data, k):
		self.mlp = mlp
		self.data = data
		self.k = k
		self.error = Error()

	def classify(self) :
		self.test_val, self.test_classif = self.mlp.classify(self.data.test_left, self.data.test_right)
		test_error, misclassified_test = self.error.norm_total_error(self.test_val, self.data.test_cat, self.k)
		print "TEST ERROR :"+str(test_error)
		print "TEST MISCLASSIFICATION RATIO :"+str(misclassified_test)

	#Find a good example (large positive t*a), a bad one (large negative t*a) and a slightly bad one (negative t*a close to 0)
	def examples(self) :
		if self.k == 2 :
			misclass = self.test_val * self.data.test_cat
			large_pos = sp.argmax(misclass)
			print "Largest positive t*a : "+str(max(misclass[misclass > 0]))
			print "Category : "+str(self.data.test_cat[:,large_pos])
			print "Found : "+str(self.test_classif[:,large_pos])
			large_neg = sp.argmin(misclass)
			print "Largest negative t*a : "+str(min(misclass[misclass < 0]))
			print "Category : "+str(self.data.test_cat[:,large_neg])
			print "Found : "+str(self.test_classif[:,large_neg])
			misclass_neg = misclass
			misclass_neg[misclass_neg>0] = -float("inf")
			close_0 = sp.argmax(misclass_neg)
			print "Closest to zero negative t*a : "+str(max(misclass_neg[misclass_neg < 0]))
			print "Category : "+str(self.data.test_cat[:,close_0])
			print "Found : "+str(self.test_classif[:,close_0])

			#Show image
			best_fig = plt.figure()
			ax5 = best_fig.add_subplot(111)
			ax5.imshow(sp.reshape(self.data.test_left[:,large_pos],(24,24)), cmap=plt.gray())
			worst_fig = plt.figure()
			ax3 = worst_fig.add_subplot(111)
			ax3.imshow(sp.reshape(self.data.test_left[:,large_neg],(24,24)), cmap=plt.gray())
			almost_fig = plt.figure()
			ax4 = almost_fig.add_subplot(111)
			ax4.imshow(sp.reshape(self.data.test_left[:,close_0],(24,24)), cmap=plt.gray())
			

		else :
			err = Error()
			maxerr = -float("inf")
			minerr = float("inf")
			besterr = float("inf")
			for i in range(self.test_val.shape[1]) :
				error = 0.5*sp.sum(LA.norm(self.test_val[:,i]-self.data.test_cat[:,i])**2)
				if self.test_classif[i] != self.data.test_cat[:,i].argmax() :
					if error > maxerr :
						maxerr = error
						maxindex = i
					if error < minerr :
						minerr = error
						minindex = i
				else :
					if error < besterr :
						besterr = error
						bestindex = i

			print "Best : "+str(besterr)
			print "Category : "+str(self.data.test_cat[:,bestindex].argmax())
			print "Found : "+str(self.test_classif[bestindex])

			print "Largest negative error : "+str(maxerr)
			print "Category : "+str(self.data.test_cat[:,maxindex].argmax())
			print "Found : "+str(self.test_classif[maxindex])

			print "Smallest negative error : "+str(minerr)
			print "Category : "+str(self.data.test_cat[:,minindex].argmax())
			print "Found : "+str(self.test_classif[minindex])


			#Show image
			
			best_fig = plt.figure()
			ax5 = best_fig.add_subplot(111)
			ax5.imshow(sp.reshape(self.data.test_left[:,bestindex],(24,24)), cmap=plt.gray())
			worst_fig = plt.figure()
			ax3 = worst_fig.add_subplot(111)
			ax3.imshow(sp.reshape(self.data.test_left[:,maxindex],(24,24)), cmap=plt.gray())
			almost_fig = plt.figure()
			ax4 = almost_fig.add_subplot(111)
			ax4.imshow(sp.reshape(self.data.test_left[:,minindex],(24,24)), cmap=plt.gray())
			

	def plot_confusion_matrix(self) :
		if self.k == 2:
			classif = self.test_classif
			cat = self.data.test_cat
			classif[self.test_classif == -1] = 0
			cat[self.data.test_cat == -1] = 0
			self.confusion_matrix(classif[0,:], cat[0,:])
		else :
			self.confusion_matrix(self.test_classif, self.data.test_cat.argmax(axis=0))

#.........这里部分代码省略.........
开发者ID:quentinms,项目名称:PCML---Mini-Project,代码行数:103,代码来源:test.py

示例4: __init__

# 需要导入模块: from error import Error [as 别名]
# 或者: from error.Error import norm_total_error [as 别名]
class TrainerValidator:

	def __init__(self, k, nb_epochs, H1, H2, nu, mu, batchsize, data):
		self.k = k

		self.data = data

		self.H1 = H1
		self.H2 = H2
		self.mu = mu
		self.nu = nu 
		self.batchsize = batchsize
	
		self.mlp = MLP(H1,H2,576, nu, mu, batchsize, self.k)
		self.error = Error()
		self.NUM_EPOCH = nb_epochs

		self.validation_error = sp.zeros(self.NUM_EPOCH+1)
		self.misclassified_val = sp.zeros(self.NUM_EPOCH+1)
		self.training_error = sp.zeros(self.NUM_EPOCH+1)
		self.misclassified_train = sp.zeros(self.NUM_EPOCH+1)

	def trainAndClassify(self):
		converge = 0
		a = 4
		var_thresh = 0.005
		early_stopping = 0
		for i in range(self.NUM_EPOCH+1):
			self.data.shuffleData()
			self.mlp.train(self.data.train_left, self.data.train_right, self.data.train_cat)
			_, _, _, _, _, results_train, _, _, _, _, _, _ = self.mlp.forward_pass(self.data.train_left, self.data.train_right)
			results_val, results_classif = self.mlp.classify(self.data.val_left, self.data.val_right)

			self.training_error[i], self.misclassified_train[i] = self.error.norm_total_error(results_train, self.data.train_cat, self.k)
			self.validation_error[i], self.misclassified_val[i] = self.error.norm_total_error(results_val, self.data.val_cat, self.k)

			print "Epoch #"+str(i)+" Ratio of misclassified: "+str(self.misclassified_val[i])+" - Error: "+str(self.validation_error[i])

			
			# Early stopping
			if early_stopping :
				if i > 0 :
					if (self.validation_error[i]>(self.validation_error[i-1]*(1-var_thresh))) :
						converge += 1
					else :
						if converge > 0 :
							converge -= 1/2

				if converge>=a :
					print "Triggering early stopping - Cause : increasing(overfitting) or convergence of the error has been detected"
					break
		#self.mlp.test_gradient(self.data.val_left, self.data.val_right, self.data.val_cat)

	def plotResults(self):
		error_fig = plt.figure()
		ax1 = error_fig.add_subplot(111)
		ax1.plot(self.validation_error, label='validation error')
		ax1.plot(self.training_error, label='training error')
		ax1.set_ylabel('error')
		ax1.set_xlabel('epoch')

		title = "k=%d H1=%d H2=%d mu=%f nu=%f batchsize=%d std(val)=%f std(err)=%f" % (self.k, self.H1, self.H2, self.mu, self.nu, self.batchsize, sp.std(self.validation_error), sp.std(self.training_error) )
		error_fig.suptitle(title)

		plt.legend()

		filename = "k=%d-H1=%d-H2=%d-mu=%f-nu=%f-batchsize=%d-nb_epoch=%d" % (self.k,self.H1, self.H2, self.mu, self.nu, self.batchsize, self.NUM_EPOCH)

		plt.savefig('results/'+filename+"-error.png")
		

		mis_fig = plt.figure()
		ax2 = mis_fig.add_subplot(111)
		ax2.plot(self.misclassified_val, label='misclassified ratio (validation)')
		ax2.plot(self.misclassified_train, label='misclassified ratio (training)')
		title = "k=%d H1=%d H2=%d mu=%f nu=%f batchsize=%d std(val)=%f std(err)=%f" % (self.k, self.H1, self.H2, self.mu, self.nu, self.batchsize, sp.std(self.misclassified_val), sp.std(self.misclassified_train) )
		mis_fig.suptitle(title)
		#ax2.set_xlim([1,self.NUM_EPOCH])
		ax2.set_ylabel('misclassified')
		ax2.set_xlabel('epoch')
		plt.legend()
		plt.savefig('results/'+filename+"-misclassified.png")
		#plt.show()

	def getMLP(self) :
		return self.mlp
		

		
开发者ID:quentinms,项目名称:PCML---Mini-Project,代码行数:88,代码来源:train_validate.py


注:本文中的error.Error.norm_total_error方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。