当前位置: 首页>>代码示例>>Python>>正文


Python api.OverlayPlotContainer类代码示例

本文整理汇总了Python中enthought.chaco.api.OverlayPlotContainer的典型用法代码示例。如果您正苦于以下问题:Python OverlayPlotContainer类的具体用法?Python OverlayPlotContainer怎么用?Python OverlayPlotContainer使用的例子?那么恭喜您, 这里精选的类代码示例或许可以为您提供帮助。


在下文中一共展示了OverlayPlotContainer类的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: _create_window

    def _create_window(self):
        ts = touchstone.read("../tests/data/deemb_mom.s2p")
        ts = ts.recombine([1, 2])

        circles_source = np.vstack(ts.stability_circle_source()).T
        circles_load = np.vstack(ts.stability_circle_load()).T

        container = OverlayPlotContainer(padding=50, fill_padding=True, bgcolor="lightgray", use_backbuffer=True)

        self.data = ArrayPlotData(
            f=ts.freqs,
            s11=ts.get_parameter(1, 1),
            s12=ts.get_parameter(1, 2),
            s21=ts.get_parameter(2, 1),
            s22=ts.get_parameter(2, 2),
            circles_source=circles_source,
            circles_load=circles_load,
        )
        self.plot = SmithPlot(self.data, title="Smith plot")

        self.plot.plot(("f", "s11"), color="auto", line_width=2.0)
        self.plot.plot(("f", "s22"), color="auto", line_width=2.0)
        # self.plot.plot(("f", "s21"), color="auto", line_width=2.0)
        # self.plot.plot(("f", "s12"), color="auto", line_width=2.0)

        self.plot.plot_circle(("f", "circles_source"), color="auto", line_width=2.0)
        self.plot.plot_circle(("f", "circles_load"), color="auto", line_width=2.0)

        container.add(self.plot)

        self.plot.tools.append(PanTool(self.plot))
        zoom = SimpleZoom(self.plot, tool_mode="box", always_on=False)
        self.plot.overlays.append(zoom)

        return Window(self, -1, component=container)
开发者ID:bmachiel,项目名称:python-nport,代码行数:35,代码来源:stability_circles.py

示例2: _create_plot_component

def _create_plot_component():

    container = OverlayPlotContainer(padding = 50, fill_padding = True,
                                     bgcolor = "lightgray", use_backbuffer=True)

    # Create the initial X-series of data
    numpoints = 100
    low = -5
    high = 15.0
    x = arange(low, high+0.001, (high-low)/numpoints)

    # Plot some bessel functions
    plots = {}
    broadcaster = BroadcasterTool()
    for i in range(4):
        y = jn(i, x)
        plot = create_line_plot((x,y), color=tuple(COLOR_PALETTE[i]), width=2.0)
        plot.index.sort_order = "ascending"
        plot.bgcolor = "white"
        plot.border_visible = True
        if i == 0:
            add_default_grids(plot)
            add_default_axes(plot)

        # Create a pan tool and give it a reference to the plot it should
        # manipulate, but don't attach it to the plot.  Instead, attach it to
        # the broadcaster.
        pan = PanTool(plot)
        broadcaster.tools.append(pan)

        container.add(plot)
        plots["Bessel j_%d"%i] = plot

    # Add an axis on the right-hand side that corresponds to the second plot.
    # Note that it uses plot.value_mapper instead of plot0.value_mapper.
    plot1 = plots["Bessel j_1"]
    axis = PlotAxis(plot1, orientation="right")
    plot1.underlays.append(axis)

    # Add the broadcast tool to the container, instead of to an
    # individual plot
    container.tools.append(broadcaster)

    legend = Legend(component=container, padding=10, align="ur")
    legend.tools.append(LegendTool(legend, drag_button="right"))
    container.overlays.append(legend)

    # Set the list of plots on the legend
    legend.plots = plots

    # Add the title at the top
    container.overlays.append(PlotLabel("Bessel functions",
                              component=container,
                              font = "swiss 16",
                              overlay_position="top"))

    # Add the traits inspector tool to the container
    container.tools.append(TraitsTool(container))

    return container
开发者ID:brycehendrix,项目名称:chaco,代码行数:60,代码来源:multiaxis.py

示例3: init

    def init(self, parent):
        factory = self.factory
        container = OverlayPlotContainer(bgcolor='transparent',
                                         padding=0, spacing=0)

        window = Window(parent, component=container)

        interval = self.high - self.low
        data = ([self.low, self.high], [0.5]*2)
        plot = create_line_plot(data, color='black', bgcolor="sys_window")
        plot.x_mapper.range.low = self.low - interval*0.1
        plot.x_mapper.range.high = self.high + interval*0.1
        plot.y_mapper.range.high = 1.0
        plot.y_mapper.range.low = 0.0

        range_selection = RangeSelection(plot, left_button_selects=True)
        # Do not allow the user to reset the range
        range_selection.event_state = "selected"
        range_selection.deselect = lambda x: None
        range_selection.on_trait_change(self.update_interval, 'selection')

        plot.tools.append(range_selection)
        plot.overlays.append(RangeKnobsOverlay(plot))
        self.plot = plot
        container.add(self.plot)

        # To set the low and high, we're actually going to set the
        # 'selection' metadata on the line plot to the tuple (low,high).
        plot.index.metadata["selections"] = (0, 1.0)

        # Tell the editor what to display
        self.control = window.control
        self.control.SetSize((factory.width, factory.height))
开发者ID:brycehendrix,项目名称:chaco,代码行数:33,代码来源:chaco_trait_editor.py

示例4: test_basics

 def test_basics(self):
     container = OverlayPlotContainer(resizable='', bounds=[100.0,200.0])
     self.assert_tuple(container.get_preferred_size(), (100.0,200.0))
     self.assertEquals(container._layout_needed, True)
     container.do_layout()
     self.assertEquals(container._layout_needed, False)
     return
开发者ID:brycehendrix,项目名称:chaco,代码行数:7,代码来源:plotcontainer_test_case.py

示例5: _container_default

    def _container_default(self):
        self.plot = None

        # Create the data and datasource objects
        # In order for the date axis to work, the index data points need to
        # be in units of seconds since the epoch.  This is because we are using
        # the CalendarScaleSystem, whose formatters interpret the numerical values
        # as seconds since the epoch.
        numpoints = 500
        index = create_dates(numpoints)

        returns = random.lognormal(0.00, 0.04, size=numpoints)
        average = 100.0 * cumprod(returns)
        high = average + abs(random.normal(0, 20.0, size=numpoints))
        low = average - abs(random.normal(0, 20.0, size=numpoints))
        delta = high - low
        open = low + delta * random.uniform(0.05, 0.95, size=numpoints)
        close = low + delta * random.uniform(0.05, 0.95, size=numpoints)
        price = vstack((open, high, low, close, average))

        time_ds = ArrayDataSource(index)
        price_ds = PriceDataSource(price, sort_order="none")

        # Create the price plot
        price_plot = self._create_plot(time_ds, price_ds)
        self.plot = price_plot

        container = OverlayPlotContainer(padding=35)
        container.add(price_plot)
        return container
开发者ID:brycehendrix,项目名称:chaco,代码行数:30,代码来源:ohlc.py

示例6: __init__

 def __init__(self, **traits):
     super(ContainerExample, self).__init__(**traits)
     x = np.linspace(-14, 14, 100)
     y = np.sin(x) * x**3 / 1000
     data = ArrayPlotData(x=x, y=y)
     
     
     p1 = Plot(data, padding=30)
     p1.plot(("x", "y"), type="scatter", color="blue")
     p1.plot(("x", "y"), type="line", color="blue")
     
     p2 = Plot(data, padding=30)
     p2.plot(("x", "y"), type="line", color="blue")
     p2.set(bounds = [200, 100], position = [70,150],  
     bgcolor = (0.9,0.9,0.9), unified_draw=True, resizable="")
     
     p3 = Plot(data, padding=30)
     p3.plot(("x", "y"), type="line", color="blue", line_width=2.0)
     
     p4 = Plot(data,  padding=30)
     p4.plot(("x", "y"), type="scatter", color="red", marker="circle")
     
     c1 = OverlayPlotContainer(p1, p2) 
     
     c1.fixed_preferred_size = p3.get_preferred_size() 
     c2 = HPlotContainer(c1, p3) 
     c3 = VPlotContainer(p4, c2) 
     
     self.plot = c3
开发者ID:shark803,项目名称:PythonCodeFromBook,代码行数:29,代码来源:chaco_containers.py

示例7: slice_plot

    def slice_plot( self, anat, coefs, **traits ):

        p  = Plot( self.plot_data, default_origin = 'bottom left' )
        p2 = Plot( self.plot_data, default_origin = 'bottom left' )

        p.x_axis.visible = False; p2.x_axis.visible = False
        p.y_axis.visible = False; p2.y_axis.visible = False

        bounds = self.plot_data.get_data(anat).shape
        asp    = float( bounds[1] ) / float( bounds[0] )

        p.img_plot( anat,
#                    xbounds  = np.linspace( 0, 1, bounds[1] + 1 ),
#                    ybounds  = np.linspace( 0, 1, bounds[0] + 1 ),
                    colormap = chaco_colormaps.gray )
        
        p2.img_plot( coefs,
#                     xbounds  = np.linspace( 0, 1, bounds[1] + 1 ),
#                     ybounds  = np.linspace( 0, 1, bounds[0] + 1 ),
#                     bgcolor = 'transparent',
                     colormap = self.cmap,
                     interpolation = 'nearest')

#        p.aspect_ratio = asp; p2.aspect_ratio = asp
        p.aspect_ratio = asp; p2.aspect_ratio = asp

        subplot = OverlayPlotContainer( )

        subplot.add( p )
        subplot.add( p2 )

        return subplot 
开发者ID:kieferkat,项目名称:neuroparser,代码行数:32,代码来源:coefficients.py

示例8: test_min_size

 def test_min_size(self):
     container = OverlayPlotContainer(resizable='', bounds=[50.0,50.0])
     component = PlotComponent(resizable='', position=[50.0,60.0],
                               bounds=[100.0, 110.0])
     container.add(component)
     container.do_layout()
     self.assert_tuple(component.position, (50.0,60.0))
     self.assert_tuple(component.bounds, (100.0,110.0))
     return
开发者ID:brycehendrix,项目名称:chaco,代码行数:9,代码来源:plotcontainer_test_case.py

示例9: _create_plot_component

def _create_plot_component():

    container = OverlayPlotContainer(padding = 50, fill_padding = True,
                                     bgcolor = "lightgray", use_backbuffer=True)

    # Create the initial X-series of data
    numpoints = 100
    low = -5
    high = 15.0
    x = arange(low, high+0.001, (high-low)/numpoints)
    y = jn(0, x)
    plot = create_line_plot((x,y), color=tuple(COLOR_PALETTE[0]), width=2.0)
    plot.index.sort_order = "ascending"
    plot.bgcolor = "white"
    plot.border_visible = True
    add_default_grids(plot)
    add_default_axes(plot)

    # Add some tools
    plot.tools.append(PanTool(plot))
    zoom = ZoomTool(plot, tool_mode="box", always_on=False)
    plot.overlays.append(zoom)

    # Add a dynamic label.  This can be dragged and moved around using the
    # right mouse button.  Note the use of padding to offset the label
    # from its data point.
    label = DataLabel(component=plot, data_point=(x[40], y[40]),
                      label_position="top left", padding=40,
                      bgcolor = "lightgray",
                      border_visible=False)
    plot.overlays.append(label)
    tool = DataLabelTool(label, drag_button="right", auto_arrow_root=True)
    label.tools.append(tool)

    # Add some static labels.
    label2 = DataLabel(component=plot, data_point=(x[20], y[20]),
                       label_position="bottom right",
                       border_visible=False,
                       bgcolor="transparent",
                       marker_color="blue",
                       marker_line_color="transparent",
                       marker = "diamond",
                       arrow_visible=False)
    plot.overlays.append(label2)

    label3 = DataLabel(component=plot, data_point=(x[80], y[80]),
                       label_position="top", padding_bottom=20,
                       marker_color="transparent",
                       marker_size=8,
                       marker="circle",
                       arrow_visible=False)
    plot.overlays.append(label3)
    container.add(plot)

    return container
开发者ID:brycehendrix,项目名称:chaco,代码行数:55,代码来源:data_labels.py

示例10: _create_plot_component

def _create_plot_component():

    # Create some x-y data series to plot
    plot_area = OverlayPlotContainer(border_visible=True)
    container = HPlotContainer(padding=50, bgcolor="transparent")
    #container.spacing = 15

    x = linspace(-2.0, 10.0, 100)
    for i in range(5):
        color = tuple(COLOR_PALETTE[i])
        y = jn(i, x)
        renderer = create_line_plot((x, y), color=color)
        plot_area.add(renderer)
        #plot_area.padding_left = 20

        axis = PlotAxis(orientation="left", resizable="v",
                    mapper = renderer.y_mapper,
                    axis_line_color=color,
                    tick_color=color,
                    tick_label_color=color,
                    title_color=color,
                    bgcolor="transparent",
                    title = "jn_%d" % i,
                    border_visible = True,)
        axis.bounds = [60,0]
        axis.padding_left = 10
        axis.padding_right = 10

        container.add(axis)

        if i == 4:
            # Use the last plot's X mapper to create an X axis and a
            # vertical grid
            x_axis = PlotAxis(orientation="bottom", component=renderer,
                        mapper=renderer.x_mapper)
            renderer.overlays.append(x_axis)
            grid = PlotGrid(mapper=renderer.x_mapper, orientation="vertical",
                    line_color="lightgray", line_style="dot")
            renderer.underlays.append(grid)

    # Add the plot_area to the horizontal container
    container.add(plot_area)

    # Attach some tools to the plot
    broadcaster = BroadcasterTool()
    for plot in plot_area.components:
        broadcaster.tools.append(PanTool(plot))

    # Attach the broadcaster to one of the plots.  The choice of which
    # plot doesn't really matter, as long as one of them has a reference
    # to the tool and will hand events to it.
    plot.tools.append(broadcaster)

    return container
开发者ID:brycehendrix,项目名称:chaco,代码行数:54,代码来源:stacked_axis.py

示例11: __init__

  def __init__(self, link):
    super(TrackingView, self).__init__()

    self.link = link
    self.link.add_callback(MSG_TRACKING_SNRS, self.tracking_snrs_callback)

    # ======= Line Plot =======

    self.plot_data = ArrayPlotData(t=[0.0])
    self.plot = Plot(self.plot_data, auto_colors=colours_list)
    self.plot.value_range.tight_bounds = False
    self.plot.value_range.low_setting = 0.0
    for n in range(TRACK_N_CHANNELS):
      self.plot_data.set_data('ch'+str(n), [0.0])
      self.plot.plot(('t', 'ch'+str(n)), type='line', color='auto')

    # ======= Bar Plot =======

    idxs = ArrayDataSource(range(1, len(self.snrs)+1))
    self.vals = ArrayDataSource(self.snrs, sort_order='none')
    # Create the index range
    index_range = DataRange1D(idxs, low=0.4, high=TRACK_N_CHANNELS+0.6)
    index_mapper = LinearMapper(range=index_range)
    # Create the value range
    value_range = DataRange1D(low=0.0, high=25.0)
    value_mapper = LinearMapper(range=value_range)

    plot = BarPlot(index=idxs, value=self.vals, 
                   index_mapper=index_mapper, value_mapper=value_mapper, 
                   line_color='blue', fill_color='blue', bar_width=0.8)

    container = OverlayPlotContainer(bgcolor = "white")
    plot.padding = 10
    plot.padding_left = 30
    plot.padding_bottom = 30
    container.add(plot)

    left_axis = PlotAxis(plot, orientation='left')
    bottom_axis = LabelAxis(plot, orientation='bottom',
                           labels = map(str, range(1, TRACK_N_CHANNELS+1)),
                           positions = range(1, TRACK_N_CHANNELS+1),
                           small_haxis_style=True)

    plot.underlays.append(left_axis)
    plot.underlays.append(bottom_axis)

    self.snr_bars = container

    self.python_console_cmds = {
      'track': self
    }
开发者ID:peddie,项目名称:Swift-Nav-Code,代码行数:51,代码来源:tracking_view.py

示例12: _create_spectrumplot

    def _create_spectrumplot(self, x, y):
        spectrumplot = create_line_plot((x, y), index_bounds=None, value_bounds=None,
                                        orientation='v', color='green', width=1.0, dash='solid',
                                        value_mapper_class=LinearMapper,
                                        bgcolor='transparent', border_visible=True,
                                        add_grid=False, add_axis=False, index_sort='ascending')
        add_default_axes(spectrumplot, orientation='flipped', vtitle='Frequency [MHz]', htitle='Amplitude')
        spectrumplot.origin = "top left"
        spectrumplot.tools.append(PanTool(spectrumplot, drag_button="right"))
        zoom = SimpleZoom(component=spectrumplot, tool_mode="box", drag_button="left", always_on=True)
        spectrumplot.overlays.append(zoom)

        container = OverlayPlotContainer(padding=40, padding_left=60)
        container.add(spectrumplot)
        self.container = container
开发者ID:kmunve,项目名称:processgpr,代码行数:15,代码来源:trace_viewer.py

示例13: _create_draggable_plot_component

def _create_draggable_plot_component(title, initial_values=None,  on_change_functor=None):

    container = OverlayPlotContainer(padding = 30, fill_padding = True,
                                     bgcolor = "lightgray", use_backbuffer=True)


    if initial_values:
        x = initial_values[0]
        y = initial_values[1]
    else:
        # Create the initial X-series of data
        numpoints = 30
        low = -5
        high = 15.0
        x = linspace(low, high, numpoints)
        y = jn(0, x)

    lineplot = create_line_plot((x, y), color=tuple(COLOR_PALETTE[0]),
                                width=2.0)
    lineplot.selected_color = 'none'

    scatter = ScatterPlot(
        index=lineplot.index,
        value=lineplot.value,
        index_mapper=lineplot.index_mapper,
        value_mapper=lineplot.value_mapper,
        color=tuple(COLOR_PALETTE[0]),
        marker_size=2,
        )
    scatter.index.sort_order = 'ascending'
    scatter.bgcolor = 'white'
    scatter.border_visible = True

    add_default_grids(scatter)
    add_default_axes(scatter)
    scatter.tools.append(PanTool(scatter, drag_button='right'))

    # The ZoomTool tool is stateful and allows drawing a zoom
    # box to select a zoom region.
    zoom = ZoomTool(scatter, tool_mode='box', always_on=False,
                    drag_button=None)
    scatter.overlays.append(zoom)

    point_dragging_tool = PointDraggingTool(scatter)
    point_dragging_tool.on_change_functor = on_change_functor
    scatter.tools.append(point_dragging_tool)

    container.add(lineplot)
    container.add(scatter)
    # Add the title at the top
    container.overlays.append(PlotLabel(title, component=container,
                              font='swiss 16', overlay_position='top'))

    container.mx = lineplot.index.get_data()
    container.my = lineplot.value.get_data()

    container.lineplot = lineplot
    return container
开发者ID:NeuroArchive,项目名称:morphforge,代码行数:58,代码来源:chaco_util.py

示例14: main

def main():
    # Create some x-y data series to plot
    x = linspace(-2.0, 10.0, 100)
    pd = ArrayPlotData(index = x)
    for i in range(5):
        pd.set_data("y" + str(i), jn(i,x))

    # Create some line plots of some of the data
    plot = Plot(pd, bgcolor="none", padding=30, border_visible=True,
                 overlay_border=True, use_backbuffer=False)
    plot.legend.visible = True
    plot.plot(("index", "y0", "y1", "y2"), name="j_n, n<3", color="auto")
    plot.plot(("index", "y3"), name="j_3", color="auto")
    plot.tools.append(PanTool(plot))
    zoom = ZoomTool(component=plot, tool_mode="box", always_on=False)
    plot.overlays.append(zoom)

    # Create the mlab test mesh and get references to various parts of the
    # VTK pipeline
    f = mlab.figure(size=(600,500))
    m = mlab.test_mesh()
    scene = mlab.gcf().scene
    render_window = scene.render_window
    renderer = scene.renderer
    rwi = scene.interactor

    plot.resizable = ""
    plot.bounds = [200,200]
    plot.padding = 25
    plot.outer_position = [30,30]
    plot.tools.append(MoveTool(component=plot,drag_button="right"))

    container = OverlayPlotContainer(bgcolor = "transparent",
                    fit_window = True)
    container.add(plot)

    # Create the Enable Window
    window = EnableVTKWindow(rwi, renderer,
            component=container,
            #istyle_class = tvtk.InteractorStyleSwitch,
            #istyle_class = tvtk.InteractorStyle,
            istyle_class = tvtk.InteractorStyleTrackballCamera,
            bgcolor = "transparent",
            event_passthrough = True,
            )

    mlab.show()
    return window, render_window
开发者ID:brycehendrix,项目名称:chaco,代码行数:48,代码来源:vtk_example.py

示例15: _plot_default

    def _plot_default(self):
        
        container = OverlayPlotContainer(bgcolor = "white")
        
        
        self.idx = ArrayDataSource( range(1, self.binsNum+1) )
        self.vals = ArrayDataSource(self.value_points, sort_order="none")
        
        index_range = DataRange1D(self.idx, low=0, high=self.binsNum+2 )
        index_mapper = LinearMapper(range=index_range)
    
        value_range = DataRange1D(low=0, high=self.value_points.max())
        value_mapper = LinearMapper(range=value_range)
    
        # Create the plot
        self.histPlot = BarPlot(index=self.idx, value=self.vals,
                        value_mapper=value_mapper,
                        index_mapper=index_mapper,
                        line_color='black',
                        fill_color=tuple(COLOR_PALETTE[1]),
                        bar_width=0.8, antialias=False)
        
        plots = [self.histPlot]
        
        for plot in plots:
            plot.padding = 50
            plot.padding_left = 80
            plot.padding_top = 30
            container.add(plot)
    
        left_axis = PlotAxis(plot, orientation='left',
                               title='Number / Probability',
                               positions = [num for num in self.value_points],
                               labels = ["%.2f" % num for num in self.value_points],
                               #small_haxis_style=True
                               )

        bottom_axis = LabelAxis(plot, orientation='bottom',
                               title='Values',
                               positions = range(1, self.binsNum+1),
                               labels = ["%.2f" % num for num in self.index_points],
                               )
    
        plot.underlays.append(left_axis)
        plot.underlays.append(bottom_axis)
           
        return container
开发者ID:Snegovikufa,项目名称:HPGL-GUI,代码行数:47,代码来源:statistics_window.py


注:本文中的enthought.chaco.api.OverlayPlotContainer类示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。