本文整理汇总了Python中enthought.chaco.api.HPlotContainer.bgcolor方法的典型用法代码示例。如果您正苦于以下问题:Python HPlotContainer.bgcolor方法的具体用法?Python HPlotContainer.bgcolor怎么用?Python HPlotContainer.bgcolor使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类enthought.chaco.api.HPlotContainer
的用法示例。
在下文中一共展示了HPlotContainer.bgcolor方法的4个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: _create_plot_component
# 需要导入模块: from enthought.chaco.api import HPlotContainer [as 别名]
# 或者: from enthought.chaco.api.HPlotContainer import bgcolor [as 别名]
def _create_plot_component():
# Create some data
numpts = 1000
x = sort(random(numpts))
y = random(numpts)
color = exp(-(x**2 + y**2))
# Create a plot data obect and give it this data
pd = ArrayPlotData()
pd.set_data("index", x)
pd.set_data("value", y)
pd.set_data("color", color)
# Create the plot
plot = Plot(pd)
plot.plot(("index", "value", "color"),
type="cmap_scatter",
name="my_plot",
color_mapper=jet,
marker = "square",
fill_alpha = 0.5,
marker_size = 6,
outline_color = "black",
border_visible = True,
bgcolor = "white")
# Tweak some of the plot properties
plot.title = "Colormapped Scatter Plot"
plot.padding = 50
plot.x_grid.visible = False
plot.y_grid.visible = False
plot.x_axis.font = "modern 16"
plot.y_axis.font = "modern 16"
# Right now, some of the tools are a little invasive, and we need the
# actual ColomappedScatterPlot object to give to them
cmap_renderer = plot.plots["my_plot"][0]
# Attach some tools to the plot
plot.tools.append(PanTool(plot, constrain_key="shift"))
zoom = ZoomTool(component=plot, tool_mode="box", always_on=False)
plot.overlays.append(zoom)
selection = ColormappedSelectionOverlay(cmap_renderer, fade_alpha=0.35,
selection_type="mask")
cmap_renderer.overlays.append(selection)
# Create the colorbar, handing in the appropriate range and colormap
colorbar = create_colorbar(plot.color_mapper)
colorbar.plot = cmap_renderer
colorbar.padding_top = plot.padding_top
colorbar.padding_bottom = plot.padding_bottom
# Create a container to position the plot and the colorbar side-by-side
container = HPlotContainer(use_backbuffer = True)
container.add(plot)
container.add(colorbar)
container.bgcolor = "lightgray"
return container
示例2: _create_plot_component
# 需要导入模块: from enthought.chaco.api import HPlotContainer [as 别名]
# 或者: from enthought.chaco.api.HPlotContainer import bgcolor [as 别名]
def _create_plot_component(self):
# Create a plot data object and give it this data
self.pd = ArrayPlotData()
self.pd.set_data("imagedata", self.data[self.data_name])
# Create the plot
self.tplot = Plot(self.pd, default_origin="top left")
self.tplot.x_axis.orientation = "top"
self.tplot.img_plot("imagedata",
name="my_plot",
#xbounds=(0,10),
#ybounds=(0,10),
colormap=jet)
# Tweak some of the plot properties
self.tplot.title = "Matrix"
self.tplot.padding = 50
# Right now, some of the tools are a little invasive, and we need the
# actual CMapImage object to give to them
self.my_plot = self.tplot.plots["my_plot"][0]
# Attach some tools to the plot
self.tplot.tools.append(PanTool(self.tplot))
zoom = ZoomTool(component=self.tplot, tool_mode="box", always_on=False)
self.tplot.overlays.append(zoom)
# my custom tool to get the connection information
self.custtool = CustomTool(self.tplot)
self.tplot.tools.append(self.custtool)
# Create the colorbar, handing in the appropriate range and colormap
colormap = self.my_plot.color_mapper
self.colorbar = ColorBar(index_mapper=LinearMapper(range=colormap.range),
color_mapper=colormap,
plot=self.my_plot,
orientation='v',
resizable='v',
width=30,
padding=20)
self.colorbar.padding_top = self.tplot.padding_top
self.colorbar.padding_bottom = self.tplot.padding_bottom
# create a range selection for the colorbar
self.range_selection = RangeSelection(component=self.colorbar)
self.colorbar.tools.append(self.range_selection)
self.colorbar.overlays.append(RangeSelectionOverlay(component=self.colorbar,
border_color="white",
alpha=0.8,
fill_color="lightgray"))
# we also want to the range selection to inform the cmap plot of
# the selection, so set that up as well
self.range_selection.listeners.append(self.my_plot)
# Create a container to position the plot and the colorbar side-by-side
container = HPlotContainer(use_backbuffer = True)
container.add(self.tplot)
container.add(self.colorbar)
container.bgcolor = "white"
return container
示例3: _create_plot_component
# 需要导入模块: from enthought.chaco.api import HPlotContainer [as 别名]
# 或者: from enthought.chaco.api.HPlotContainer import bgcolor [as 别名]
def _create_plot_component():
# Create a scalar field to colormap# Create a scalar field to colormap
xbounds = (-2*pi, 2*pi, 600)
ybounds = (-1.5*pi, 1.5*pi, 300)
xs = linspace(*xbounds)
ys = linspace(*ybounds)
x, y = meshgrid(xs,ys)
z = jn(2, x)*y*x
# Create a plot data obect and give it this data
pd = ArrayPlotData()
pd.set_data("imagedata", z)
# Create the plot
plot = Plot(pd)
plot.img_plot("imagedata",
name="my_plot",
xbounds=xbounds[:2],
ybounds=ybounds[:2],
colormap=jet)
# Tweak some of the plot properties
plot.title = "Selectable Image Plot"
plot.padding = 50
# Right now, some of the tools are a little invasive, and we need the
# actual CMapImage object to give to them
my_plot = plot.plots["my_plot"][0]
# Attach some tools to the plot
plot.tools.append(PanTool(plot))
zoom = ZoomTool(component=plot, tool_mode="box", always_on=False)
plot.overlays.append(zoom)
# Create the colorbar, handing in the appropriate range and colormap
colormap = my_plot.color_mapper
colorbar = ColorBar(index_mapper=LinearMapper(range=colormap.range),
color_mapper=colormap,
plot=my_plot,
orientation='v',
resizable='v',
width=30,
padding=20)
colorbar.padding_top = plot.padding_top
colorbar.padding_bottom = plot.padding_bottom
# create a range selection for the colorbar
range_selection = RangeSelection(component=colorbar)
colorbar.tools.append(range_selection)
colorbar.overlays.append(RangeSelectionOverlay(component=colorbar,
border_color="white",
alpha=0.8,
fill_color="lightgray"))
# we also want to the range selection to inform the cmap plot of
# the selection, so set that up as well
range_selection.listeners.append(my_plot)
# Create a container to position the plot and the colorbar side-by-side
container = HPlotContainer(use_backbuffer = True)
container.add(plot)
container.add(colorbar)
container.bgcolor = "lightgray"
#my_plot.set_value_selection((-1.3, 6.9))
return container
示例4: _create_plot_component
# 需要导入模块: from enthought.chaco.api import HPlotContainer [as 别名]
# 或者: from enthought.chaco.api.HPlotContainer import bgcolor [as 别名]
def _create_plot_component(file_name):
# Create a scalar field to colormap
z = load(file_name)
pd = ArrayPlotData()
pd.set_data("imagedata", z)
# Create the plot
plot = Plot(pd)
plot.bgcolor = 'gray'
img_plot = plot.img_plot("imagedata",
name='my_plot',
colormap=jet,
hide_grids=True)[0]
#cont_plot=plot.contour_plot('imagedata', type='line', name='countour')
# Tweak some of the plot properties
#plot.title = file_name
plot.padding = 40
plot.padding_right=20
# Attach some tools to the plot
plot.tools.append(PanTool(plot))
#plot.tools.append(TraitsTool(plot))
zoom = ZoomTool(component=img_plot, tool_mode="box", always_on=False)
img_plot.overlays.append(zoom)
#plot.y_axis.tick_label_formatter = lambda x: "%.3e" % x
#plot.x_axis.tick_label_formatter = lambda x: "%.3e" % x
#plot.tools.append(SaveTool(plot))
# Right now, some of the tools are a little invasive, and we need the
# actual CMapImage object to give to them
my_plot = img_plot#plot.plots["my_plot"][0]
colormap = my_plot.color_mapper
colorbar = ColorBar(index_mapper=LinearMapper(range=colormap.range),
color_mapper=colormap,
plot=my_plot,
orientation='v',
resizable='v',
width=25,
padding=0)
colorbar.origin = 'bottom left'
#colorbar._axis.tick_label_formatter = lambda x: '%.0e'%(x*10e6) + u' [\u00b5' + 'Watt]'
colorbar._axis.tick_label_formatter = lambda x: ('%.0e'%(x*1e6))
colorbar._axis.orientation = 'right'
colorbar._axis.title = u'Intensity [\u00b5W]'
colorbar.padding_top = plot.padding_top
colorbar.padding_bottom = plot.padding_bottom
colorbar.padding_right = 100
# create a range selection for the colorbar
range_selection = RangeSelection(component=colorbar)
colorbar.tools.append(range_selection)
colorbar.overlays.append(RangeSelectionOverlay(component=colorbar,
border_color="white",
alpha=0.5,
fill_color="lightgray"))
range_selection.listeners.append(my_plot)
imgtool = ImageInspectorTool(img_plot)
img_plot.tools.append(imgtool)
plot.overlays.append(ImageInspectorOverlay(component=img_plot, image_inspector=imgtool))
# we also want to the range selection to inform the cmap plot of
# the selection, so set that up as well
# Create a container to position the plot and the colorbar side-by-side
container = HPlotContainer(use_backbuffer = True)
container.add(plot)
container.add(colorbar)
container.bgcolor = "white"
container.tools.append(SaveTool(container))
container.tools.append(TraitsTool(container))
#my_plot.set_value_selection((-1.3, 6.9))
return container