本文整理汇总了Python中enthought.chaco.api.ArrayPlotData类的典型用法代码示例。如果您正苦于以下问题:Python ArrayPlotData类的具体用法?Python ArrayPlotData怎么用?Python ArrayPlotData使用的例子?那么恭喜您, 这里精选的类代码示例或许可以为您提供帮助。
在下文中一共展示了ArrayPlotData类的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: _create_plot_component
def _create_plot_component():
# Create some x-y data series to plot
x = linspace(-2.0, 10.0, 100)
pd = ArrayPlotData(index = x)
for i in range(5):
pd.set_data("y" + str(i), jn(i,x))
# Create some line plots of some of the data
plot1 = Plot(pd, title="Line Plot", padding=50, border_visible=True)
plot1.legend.visible = True
plot1.plot(("index", "y0", "y1", "y2"), name="j_n, n<3", color="red")
plot1.plot(("index", "y3"), name="j_3", color="blue")
# Attach some tools to the plot
plot1.tools.append(PanTool(plot1))
zoom = ZoomTool(component=plot1, tool_mode="box", always_on=False)
plot1.overlays.append(zoom)
# Create a second scatter plot of one of the datasets, linking its
# range to the first plot
plot2 = Plot(pd, range2d=plot1.range2d, title="Scatter plot", padding=50,
border_visible=True)
plot2.plot(('index', 'y3'), type="scatter", color="blue", marker="circle")
# Create a container and add our plots
container = HPlotContainer()
container.add(plot1)
container.add(plot2)
return container
示例2: __init__
def __init__(self, depth, data_series, **kw):
super(MyPlot, self).__init__(**kw)
plot_data = ArrayPlotData(index=depth)
plot_data.set_data('data_series', data_series)
self.plot = Plot(plot_data, orientation='v', origin='top left')
self.plot.plot(('index', 'data_series'))
示例3: DataChooser
class DataChooser(HasTraits):
plot = Instance(Plot)
data_name = Enum("jn0", "jn1", "jn2")
traits_view = View(Item('data_name', label="Y data"),
Item('plot', editor=ComponentEditor(), show_label=False),
width=800, height=600, resizable=True,
title="Data Chooser")
def __init__(self):
x = linspace(-5, 10, 100)
self.data = {"jn0": jn(0, x),
"jn1": jn(1, x),
"jn2": jn(2, x)}
# Create the data and the PlotData object
self.plotdata = ArrayPlotData(x=x, y=self.data["jn0"])
# Create a Plot and associate it with the PlotData
plot = Plot(self.plotdata)
# Create a line plot in the Plot
plot.plot(("x", "y"), type="line", color="blue")
self.plot = plot
def _data_name_changed(self, old, new):
self.plotdata.set_data("y", self.data[self.data_name])
示例4: _create_plot_component
def _create_plot_component():
# Create some data
numpts = 5000
x = sort(random(numpts))
y = random(numpts)
# Create a plot data obect and give it this data
pd = ArrayPlotData()
pd.set_data("index", x)
pd.set_data("value", y)
# Create the plot
plot = Plot(pd)
plot.plot(("index", "value"),
type="scatter",
marker="circle",
index_sort="ascending",
color="orange",
marker_size=3,
bgcolor="white")
# Tweak some of the plot properties
plot.title = "Scatter Plot"
plot.line_width = 0.5
plot.padding = 50
# Attach some tools to the plot
plot.tools.append(PanTool(plot, constrain_key="shift"))
zoom = ZoomTool(component=plot, tool_mode="box", always_on=False)
plot.overlays.append(zoom)
return plot
示例5: _create_plot_component
def _create_plot_component():# Create a scalar field to colormap
xbounds = (-2*pi, 2*pi, 600)
ybounds = (-1.5*pi, 1.5*pi, 300)
xs = linspace(*xbounds)
ys = linspace(*ybounds)
x, y = meshgrid(xs,ys)
z = sin(x)*y
# Create a plot data obect and give it this data
pd = ArrayPlotData()
pd.set_data("imagedata", z)
# Create the plot
plot = Plot(pd)
img_plot = plot.img_plot("imagedata",
xbounds=xbounds[:2],
ybounds=ybounds[:2],
colormap=jet)[0]
# Tweak some of the plot properties
plot.title = "Image Plot with Lasso"
plot.padding = 50
lasso_selection = LassoSelection(component=img_plot)
lasso_selection.on_trait_change(lasso_updated, "disjoint_selections")
lasso_overlay = LassoOverlay(lasso_selection = lasso_selection, component=img_plot)
img_plot.tools.append(lasso_selection)
img_plot.overlays.append(lasso_overlay)
return plot
示例6: _create_plot_component
def _create_plot_component():
# Create some RGBA image data
image = zeros((200,400,4), dtype=uint8)
image[:,0:40,0] += 255 # Vertical red stripe
image[0:25,:,1] += 255 # Horizontal green stripe; also yellow square
image[-80:,-160:,2] += 255 # Blue square
image[:,:,3] = 255
# Create a plot data obect and give it this data
pd = ArrayPlotData()
pd.set_data("imagedata", image)
# Create the plot
plot = Plot(pd, default_origin="top left")
plot.x_axis.orientation = "top"
img_plot = plot.img_plot("imagedata")[0]
# Tweak some of the plot properties
plot.bgcolor = "white"
# Attach some tools to the plot
plot.tools.append(PanTool(plot, constrain_key="shift"))
plot.overlays.append(ZoomTool(component=plot,
tool_mode="box", always_on=False))
imgtool = ImageInspectorTool(img_plot)
img_plot.tools.append(imgtool)
plot.overlays.append(ImageInspectorOverlay(component=img_plot,
image_inspector=imgtool))
return plot
示例7: _create_plot_component
def _create_plot_component():# Create a scalar field to colormap
xbounds = (-2*pi, 2*pi, 600)
ybounds = (-1.5*pi, 1.5*pi, 300)
xs = linspace(*xbounds)
ys = linspace(*ybounds)
x, y = meshgrid(xs,ys)
z = sin(x)*y
# Create a plot data obect and give it this data
pd = ArrayPlotData()
pd.set_data("imagedata", z)
# Create the plot
plot = Plot(pd)
img_plot = plot.img_plot("imagedata",
xbounds = xbounds[:2],
ybounds = ybounds[:2],
colormap=jet)[0]
# Tweak some of the plot properties
plot.title = "My First Image Plot"
plot.padding = 50
# Attach some tools to the plot
plot.tools.append(PanTool(plot))
zoom = ZoomTool(component=plot, tool_mode="box", always_on=False)
plot.overlays.append(zoom)
imgtool = ImageInspectorTool(img_plot)
img_plot.tools.append(imgtool)
overlay = ImageInspectorOverlay(component=img_plot, image_inspector=imgtool,
bgcolor="white", border_visible=True)
img_plot.overlays.append(overlay)
return plot
示例8: _create_plot_component
def _create_plot_component():
# Create some x-y data series (with NaNs) to plot
x = linspace(-5.0, 15.0, 500)
x[75:125] = nan
x[200:250] = nan
x[300:330] = nan
pd = ArrayPlotData(index = x)
pd.set_data("value1", jn(0, x))
pd.set_data("value2", jn(1, x))
# Create some line and scatter plots of the data
plot = Plot(pd)
plot.plot(("index", "value1"), name="j_0(x)", color="red", width=2.0)
plot.plot(("index", "value2"), type="scatter", marker_size=1,
name="j_1(x)", color="green")
# Tweak some of the plot properties
plot.title = "Plots with NaNs"
plot.padding = 50
plot.legend.visible = True
# Attach some tools to the plot
plot.tools.append(PanTool(plot))
zoom = ZoomTool(component=plot, tool_mode="box", always_on=False)
plot.overlays.append(zoom)
return plot
示例9: _create_plot_component
def _create_plot_component():
# Create some x-y data series to plot
x = linspace(-2.0, 10.0, 100)
pd = ArrayPlotData(index = x)
for i in range(5):
pd.set_data("y" + str(i), jn(i,x))
# Create some line plots of some of the data
plot1 = Plot(pd, padding=50)
plot1.plot(("index", "y0", "y1", "y2"), name="j_n, n<3", color="red")
plot1.plot(("index", "y3"), name="j_3", color="blue")
# Attach some tools to the plot
plot1.tools.append(PanTool(plot1))
zoom = ZoomTool(component=plot1, tool_mode="box", always_on=False)
plot1.overlays.append(zoom)
# Add the scrollbar
hscrollbar = PlotScrollBar(component=plot1, axis="index", resizable="h",
height=15)
plot1.padding_top = 0
hscrollbar.force_data_update()
# Create a container and add our plots
container = VPlotContainer()
container.add(plot1)
container.add(hscrollbar)
return container
示例10: _create_plot_component
def _create_plot_component():
# Create a GridContainer to hold all of our plots
container = GridContainer(padding=20, fill_padding=True,
bgcolor="lightgray", use_backbuffer=True,
shape=(3,3), spacing=(12,12))
# Create the initial series of data
x = linspace(-5, 15.0, 100)
pd = ArrayPlotData(index = x)
# Plot some bessel functions and add the plots to our container
for i in range(9):
pd.set_data("y" + str(i), jn(i,x))
plot = Plot(pd)
plot.plot(("index", "y" + str(i)),
color=tuple(COLOR_PALETTE[i]), line_width=2.0,
bgcolor = "white", border_visible=True)
# Tweak some of the plot properties
plot.border_width = 1
plot.padding = 10
# Set each plot's aspect ratio based on its position in the
# 3x3 grid of plots.
n,m = divmod(i, 3)
plot.aspect_ratio = float(n+1) / (m+1)
# Attach some tools to the plot
plot.tools.append(PanTool(plot))
zoom = ZoomTool(plot, tool_mode="box", always_on=False)
plot.overlays.append(zoom)
# Add to the grid container
container.add(plot)
return container
示例11: __init__
def __init__(self, index, data_series, **kw):
super(MyPlot, self).__init__(**kw)
plot_data = ArrayPlotData(index=index)
plot_data.set_data('data_series', data_series)
self.plot = Plot(plot_data)
self.plot.plot(('index', 'data_series'))
示例12: _create_plot_component
def _create_plot_component():
# Create some data
numpts = 1000
x = sort(random(numpts))
y = random(numpts)
color = exp(-(x**2 + y**2))
# Create a plot data obect and give it this data
pd = ArrayPlotData()
pd.set_data("index", x)
pd.set_data("value", y)
pd.set_data("color", color)
# Create the plot
plot = Plot(pd)
plot.plot(("index", "value", "color"),
type="cmap_scatter",
name="my_plot",
color_mapper=jet,
marker = "square",
fill_alpha = 0.5,
marker_size = 6,
outline_color = "black",
border_visible = True,
bgcolor = "white")
# Tweak some of the plot properties
plot.title = "Colormapped Scatter Plot"
plot.padding = 50
plot.x_grid.visible = False
plot.y_grid.visible = False
plot.x_axis.font = "modern 16"
plot.y_axis.font = "modern 16"
# Right now, some of the tools are a little invasive, and we need the
# actual ColomappedScatterPlot object to give to them
cmap_renderer = plot.plots["my_plot"][0]
# Attach some tools to the plot
plot.tools.append(PanTool(plot, constrain_key="shift"))
zoom = ZoomTool(component=plot, tool_mode="box", always_on=False)
plot.overlays.append(zoom)
selection = ColormappedSelectionOverlay(cmap_renderer, fade_alpha=0.35,
selection_type="mask")
cmap_renderer.overlays.append(selection)
# Create the colorbar, handing in the appropriate range and colormap
colorbar = create_colorbar(plot.color_mapper)
colorbar.plot = cmap_renderer
colorbar.padding_top = plot.padding_top
colorbar.padding_bottom = plot.padding_bottom
# Create a container to position the plot and the colorbar side-by-side
container = HPlotContainer(use_backbuffer = True)
container.add(plot)
container.add(colorbar)
container.bgcolor = "lightgray"
return container
示例13: _create_plot_component
def _create_plot_component():
# Create some data
numpts = 1000
x = numpy.arange(0, numpts)
y = numpy.random.random(numpts)
marker_size = numpy.random.normal(4.0, 4.0, numpts)
# Create a plot data object and give it this data
pd = ArrayPlotData()
pd.set_data("index", x)
pd.set_data("value", y)
# Because this is a non-standard renderer, we can't call plot.plot, which
# sets up the array data sources, mappers and default index/value ranges.
# So, its gotta be done manually for now.
index_ds = ArrayDataSource(x)
value_ds = ArrayDataSource(y)
# Create the plot
plot = Plot(pd)
plot.index_range.add(index_ds)
plot.value_range.add(value_ds)
# Create the index and value mappers using the plot data ranges
imapper = LinearMapper(range=plot.index_range)
vmapper = LinearMapper(range=plot.value_range)
# Create the scatter renderer
scatter = VariableSizeScatterPlot(
index=index_ds,
value=value_ds,
index_mapper = imapper,
value_mapper = vmapper,
marker='circle',
marker_size=marker_size,
color=(1.0,0.0,0.75,0.4))
# Append the renderer to the list of the plot's plots
plot.add(scatter)
plot.plots['var_size_scatter'] = [scatter]
# Tweak some of the plot properties
plot.title = "Scatter Plot"
plot.line_width = 0.5
plot.padding = 50
# Attach some tools to the plot
plot.tools.append(PanTool(plot, constrain_key="shift"))
zoom = ZoomTool(component=plot, tool_mode="box", always_on=False)
plot.overlays.append(zoom)
return plot
示例14: __init__
def __init__(self, index, value, *args, **kw):
super(PlotExample, self).__init__(*args, **kw)
plot_data = ArrayPlotData(index=index)
plot_data.set_data("value", value)
self.plot = Plot(plot_data)
line = self.plot.plot(("index", "value"))[0]
line.overlays.append(XRayOverlay(line))
line.tools.append(BoxSelectTool(line))
示例15: _plot_default
def _plot_default(self):
outcomes, results, time = self._prepare_data()
# get the x,y data to plot
pds = []
for outcome in outcomes:
pd = ArrayPlotData(index = time)
result = results.get(outcome)
for j in range(result.shape[0]):
pd.set_data("y"+str(j), result[j, :] )
pds.append(pd)
# Create a container and add our plots
container = GridContainer(
bgcolor="white", use_backbuffer=True,
shape=(len(outcomes),1))
#plot data
tools = []
for j, outcome in enumerate(outcomes):
pd1 = pds[j]
# Create some line plots of some of the data
plot = Plot(pd1, title=outcome, border_visible=True,
border_width = 1)
plot.legend.visible = False
a = len(pd1.arrays)- 1
if a > 1000:
a = 1000
for i in range(a):
plotvalue = "y"+str(i)
color = colors[i%len(colors)]
plot.plot(("index", plotvalue), name=plotvalue, color=color)
for value in plot.plots.values():
for entry in value:
entry.index.sort_order = 'ascending'
# Attach the selector tools to the plot
selectorTool1 = LineSelectorTool(component=plot)
plot.tools.append(selectorTool1)
tools.append(selectorTool1)
container.add(plot)
#make sure the selector tools know each other
for tool in tools:
a = set(tools) - set([tool])
tool._other_selectors = list(a)
tool._demo = self
return container