当前位置: 首页>>代码示例>>Python>>正文


Python Search.get_mapping方法代码示例

本文整理汇总了Python中elastic.search.Search.get_mapping方法的典型用法代码示例。如果您正苦于以下问题:Python Search.get_mapping方法的具体用法?Python Search.get_mapping怎么用?Python Search.get_mapping使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在elastic.search.Search的用法示例。


在下文中一共展示了Search.get_mapping方法的3个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: test_gene_history_loader

# 需要导入模块: from elastic.search import Search [as 别名]
# 或者: from elastic.search.Search import get_mapping [as 别名]
    def test_gene_history_loader(self):
        """ Test the gene history loading. """
        call_command("pipeline", "--steps", "load", sections="GENE_HISTORY", dir=TEST_DATA_DIR, ini=MY_INI_FILE)

        INI_CONFIG = IniParser().read_ini(MY_INI_FILE)
        idx = INI_CONFIG["GENE_HISTORY"]["index"]
        idx_type = INI_CONFIG["GENE_HISTORY"]["index_type"]
        elastic = Search(idx=idx, idx_type=idx_type)
        Search.index_refresh(idx)

        self.assertTrue(elastic.get_count()["count"] > 1, "Count documents in the index")
        map1_props = Gene.gene_history_mapping(idx, idx_type, test_mode=True).mapping_properties
        map2_props = elastic.get_mapping()
        if idx not in map2_props:
            logger.error("MAPPING ERROR: " + json.dumps(map2_props))
        self._cmpMappings(map2_props[idx]["mappings"], map1_props, idx_type)
开发者ID:tottlefields,项目名称:django-data-pipeline,代码行数:18,代码来源:tests_stage_load.py

示例2: _search_engine

# 需要导入模块: from elastic.search import Search [as 别名]
# 或者: from elastic.search.Search import get_mapping [as 别名]
def _search_engine(query_dict, user_filters, user):
    ''' Carry out a search and add results to the context object. '''
    user_query = query_dict.get("query")
    query = _gene_lookup(user_query)

    source_filter = [
        'symbol', 'synonyms', "dbxrefs.*", 'biotype', 'description',  # gene
        'id', 'rscurrent', 'rshigh',                                  # marker
        'journal', 'title', 'tags.disease',                           # publication
        'name', 'code',                                               # disease
        'study_id', 'study_name',                                     # study
        'region_name', 'marker']                                      # regions

    if re.compile(r'^[0-9 ]+$').findall(query):
        source_filter.append('pmid')      # publication - possible PMID(s)
    search_fields = []
    maxsize = 20
    if user_filters.getlist("maxsize"):
        maxsize = int(user_filters.get("maxsize"))

    # build search_fields from user input filter fields
    for it in user_filters.items():
        if len(it) == 2:
            if it[0] == 'query':
                continue
            parts = it[1].split(":")
            if len(parts) == 3:
                search_fields.append(parts[1]+"."+parts[2])
            elif len(parts) == 2:
                search_fields.append(parts[1])

    if len(search_fields) == 0:
        search_fields = list(source_filter)
        search_fields.extend(['abstract', 'authors.name',   # publication
                              'authors', 'pmids',                    # study
                              'markers', 'genes'])                   # study/region
    source_filter.extend(['date', 'pmid', 'build_id', 'ref', 'alt', 'chr_band',
                          'disease_locus', 'disease_loci', 'region_id'])

    idx_name = query_dict.get("idx")
    idx_dict = ElasticSettings.search_props(idx_name, user)
    query_filters = _get_query_filters(user_filters, user)

    highlight = Highlight(search_fields, pre_tags="<strong>", post_tags="</strong>", number_of_fragments=0)
    sub_agg = Agg('idx_top_hits', 'top_hits', {"size": maxsize, "_source": source_filter,
                                               "highlight": highlight.highlight['highlight']})
    aggs = Aggs([Agg("idxs", "terms", {"field": "_index"}, sub_agg=sub_agg),
                 Agg("biotypes", "terms", {"field": "biotype", "size": 0}),
                 Agg("categories", "terms", {"field": "_type", "size": 0})])

    # create score functions
    score_fns = _build_score_functions(idx_dict)
    equery = BoolQuery(must_arr=Query.query_string(query, fields=search_fields),
                       should_arr=_auth_arr(user),
                       b_filter=query_filters,
                       minimum_should_match=1)

    search_query = ElasticQuery(FunctionScoreQuery(equery, score_fns, boost_mode='replace'))
    elastic = Search(search_query=search_query, aggs=aggs, size=0,
                     idx=idx_dict['idx'], idx_type=idx_dict['idx_type'])
    result = elastic.search()

    mappings = elastic.get_mapping()
    _update_mapping_filters(mappings, result.aggs)
    _update_biotypes(user_filters, result)

    return {'data': _top_hits(result), 'aggs': result.aggs,
            'query': user_query, 'idx_name': idx_name,
            'fields': search_fields, 'mappings': mappings,
            'hits_total': result.hits_total,
            'maxsize': maxsize, 'took': result.took}
开发者ID:tottlefields,项目名称:pydgin,代码行数:73,代码来源:views.py

示例3: test_gene_pipeline

# 需要导入模块: from elastic.search import Search [as 别名]
# 或者: from elastic.search.Search import get_mapping [as 别名]
    def test_gene_pipeline(self):
        """ Test gene pipeline. """

        INI_CONFIG = IniParser().read_ini(MY_INI_FILE)
        idx = INI_CONFIG["ENSEMBL_GENE_GTF"]["index"]
        idx_type = INI_CONFIG["ENSEMBL_GENE_GTF"]["index_type"]

        """ 1. Test ensembl GTF loading. """
        call_command(
            "pipeline", "--steps", "stage", "load", sections="ENSEMBL_GENE_GTF", dir=TEST_DATA_DIR, ini=MY_INI_FILE
        )
        Search.index_refresh(idx)

        elastic = Search(idx=idx, idx_type=idx_type)
        self.assertGreaterEqual(elastic.get_count()["count"], 1, "Count documents in the index")
        map1_props = Gene.gene_mapping(idx, idx_type, test_mode=True).mapping_properties
        map2_props = elastic.get_mapping()
        if idx not in map2_props:
            logger.error("MAPPING ERROR: " + json.dumps(map2_props))
        self._cmpMappings(map2_props[idx]["mappings"], map1_props, idx_type)

        """ 2. Test adding entrez ID to documents """
        call_command("pipeline", "--steps", "load", sections="GENE2ENSEMBL", dir=TEST_DATA_DIR, ini=MY_INI_FILE)
        Search.index_refresh(idx)
        query = ElasticQuery.query_string("PTPN22", fields=["symbol"])
        elastic = Search(query, idx=idx)
        docs = elastic.search().docs
        self.assertEqual(len(docs), 1)
        self.assertTrue("entrez" in getattr(docs[0], "dbxrefs"))
        self.assertEqual(getattr(docs[0], "dbxrefs")["entrez"], "26191")

        """ 3. Add uniprot and fill in missing entrez fields. """
        call_command(
            "pipeline", "--steps", "download", "load", sections="ENSMART_GENE", dir=TEST_DATA_DIR, ini=MY_INI_FILE
        )
        Search.index_refresh(idx)
        query = ElasticQuery.query_string("DNMT3L", fields=["symbol"])
        elastic = Search(query, idx=idx)
        docs = elastic.search().docs
        self.assertTrue("entrez" in getattr(docs[0], "dbxrefs"))
        self.assertTrue("swissprot" in getattr(docs[0], "dbxrefs"))

        """ 4. Add gene synonyms and dbxrefs. """
        call_command("pipeline", "--steps", "load", sections="GENE_INFO", dir=TEST_DATA_DIR, ini=MY_INI_FILE)
        Search.index_refresh(idx)
        query = ElasticQuery.query_string("PTPN22", fields=["symbol"])
        elastic = Search(query, idx=idx)
        docs = elastic.search().docs
        self.assertTrue("PTPN8" in getattr(docs[0], "synonyms"))

        """ 5. Add PMIDs to gene docs. """
        call_command("pipeline", "--steps", "load", sections="GENE_PUBS", dir=TEST_DATA_DIR, ini=MY_INI_FILE)
        Search.index_refresh(idx)
        query = ElasticQuery.query_string("PTPN22", fields=["symbol"])
        elastic = Search(query, idx=idx)
        docs = elastic.search().docs
        self.assertGreater(len(getattr(docs[0], "pmids")), 0)

        """ 6. Add ortholog data. """
        call_command("pipeline", "--steps", "load", sections="ENSMART_HOMOLOG", dir=TEST_DATA_DIR, ini=MY_INI_FILE)
        Search.index_refresh(idx)
        query = ElasticQuery.query_string("PTPN22", fields=["symbol"])
        elastic = Search(query, idx=idx)
        docs = elastic.search().docs
        dbxrefs = getattr(docs[0], "dbxrefs")
        self.assertTrue("orthologs" in dbxrefs, dbxrefs)
        self.assertTrue("mmusculus" in dbxrefs["orthologs"], dbxrefs)
        self.assertEqual("ENSMUSG00000027843", dbxrefs["orthologs"]["mmusculus"]["ensembl"])

        query = ElasticQuery.filtered(
            Query.match_all(),
            TermsFilter.get_terms_filter("dbxrefs.orthologs.mmusculus.ensembl", ["ENSMUSG00000027843"]),
        )
        docs = Search(query, idx=idx, size=1).search().docs
        self.assertEqual(len(docs), 1)

        """ 7. Add mouse ortholog link to MGI """
        call_command("pipeline", "--steps", "load", sections="ENSEMBL2MGI", dir=TEST_DATA_DIR, ini=MY_INI_FILE)
        Search.index_refresh(idx)
        docs = Search(query, idx=idx, size=1).search().docs
        dbxrefs = getattr(docs[0], "dbxrefs")
        self.assertEqual("ENSMUSG00000027843", dbxrefs["orthologs"]["mmusculus"]["ensembl"])
        self.assertEqual("107170", dbxrefs["orthologs"]["mmusculus"]["MGI"])
开发者ID:tottlefields,项目名称:django-data-pipeline,代码行数:85,代码来源:tests_stage_load.py


注:本文中的elastic.search.Search.get_mapping方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。