当前位置: 首页>>代码示例>>Python>>正文


Python Executor.map方法代码示例

本文整理汇总了Python中distributed.Executor.map方法的典型用法代码示例。如果您正苦于以下问题:Python Executor.map方法的具体用法?Python Executor.map怎么用?Python Executor.map使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在distributed.Executor的用法示例。


在下文中一共展示了Executor.map方法的11个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: test__futures_to_collection

# 需要导入模块: from distributed import Executor [as 别名]
# 或者: from distributed.Executor import map [as 别名]
def test__futures_to_collection(s, a, b):
    e = Executor((s.ip, s.port), start=False)
    yield e._start()

    remote_dfs = e.map(identity, dfs)
    ddf = yield _futures_to_collection(remote_dfs, divisions=True)
    ddf2 = yield _futures_to_dask_dataframe(remote_dfs, divisions=True)
    assert isinstance(ddf, dd.DataFrame)

    assert ddf.dask == ddf2.dask

    remote_arrays = e.map(np.arange, range(3, 5))
    x = yield _futures_to_collection(remote_arrays)
    y = yield _futures_to_dask_array(remote_arrays)

    assert type(x) == type(y)
    assert x.dask == y.dask

    remote_lists = yield e._scatter([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
    b = yield _futures_to_collection(remote_lists)
    c = yield _futures_to_dask_bag(remote_lists)

    assert type(b) == type(c)
    assert b.dask == b.dask

    yield e._shutdown()
开发者ID:canavandl,项目名称:distributed,代码行数:28,代码来源:test_collections.py

示例2: dont_test_dataframes

# 需要导入模块: from distributed import Executor [as 别名]
# 或者: from distributed.Executor import map [as 别名]
def dont_test_dataframes(s, a):  # slow
    pytest.importorskip('pandas')
    n = 3000000
    fn = '/tmp/test/file.csv'
    with make_hdfs() as hdfs:
        data = (b'name,amount,id\r\n' +
                b'Alice,100,1\r\nBob,200,2\r\n' * n)
        with hdfs.open(fn, 'w') as f:
            f.write(data)

        e = Executor((s.ip, s.port), start=False)
        yield e._start()

        futures = read_bytes(fn, hdfs=hdfs, delimiter=b'\r\n')
        assert len(futures) > 1

        def load(b, **kwargs):
            assert b
            from io import BytesIO
            import pandas as pd
            bio = BytesIO(b)
            return pd.read_csv(bio, **kwargs)

        dfs = e.map(load, futures, names=['name', 'amount', 'id'], skiprows=1)
        dfs2 = yield e._gather(dfs)
        assert sum(map(len, dfs2)) == n * 2 - 1
开发者ID:kevineriklee,项目名称:distributed,代码行数:28,代码来源:test_hdfs.py

示例3: test_with_data

# 需要导入模块: from distributed import Executor [as 别名]
# 或者: from distributed.Executor import map [as 别名]
def test_with_data(s, a, b):
    ss = HTTPScheduler(s)
    ss.listen(0)

    e = Executor((s.ip, s.port), start=False)
    yield e._start()

    L = e.map(inc, [1, 2, 3])
    L2 = yield e._scatter(['Hello', 'world!'])
    yield _wait(L)

    client = AsyncHTTPClient()
    response = yield client.fetch('http://localhost:%s/memory-load.json' %
                                  ss.port)
    out = json.loads(response.body.decode())

    assert all(isinstance(v, int) for v in out.values())
    assert set(out) == {a.address_string, b.address_string}
    assert sum(out.values()) == sum(map(sys.getsizeof,
                                        [1, 2, 3, 'Hello', 'world!']))

    response = yield client.fetch('http://localhost:%s/memory-load-by-key.json'
                                  % ss.port)
    out = json.loads(response.body.decode())
    assert set(out) == {a.address_string, b.address_string}
    assert all(isinstance(v, dict) for v in out.values())
    assert all(k in {'inc', 'data'} for d in out.values() for k in d)
    assert all(isinstance(v, int) for d in out.values() for v in d.values())

    assert sum(v for d in out.values() for v in d.values()) == \
            sum(map(sys.getsizeof, [1, 2, 3, 'Hello', 'world!']))

    ss.stop()
    yield e._shutdown()
开发者ID:canavandl,项目名称:distributed,代码行数:36,代码来源:test_scheduler_http.py

示例4: test_framework_runs

# 需要导入模块: from distributed import Executor [as 别名]
# 或者: from distributed.Executor import map [as 别名]
    def test_framework_runs(self):
        with MesosCluster() as cluster:
            time.sleep(2)
            driver = DistributedDriver().create_driver(DistributedScheduler)
            driver.start()
            time.sleep(5)

            expect(cluster).to(have_activated_slaves(1))
            expect(cluster).to(have_framework_name('distributed-framework'))

            # distributed test - this probably doesnt belong here
            executor = Executor('127.0.0.1:8787')
            A = executor.map(lambda x: x**2, range(10))
            B = executor.map(lambda x: -x, A)
            total = executor.submit(sum, B)
            expect(total.result()).to(equal(-285))
            driver.stop()
开发者ID:hussainsultan,项目名称:mesos-distributed,代码行数:19,代码来源:test_framework.py

示例5: test_no_divisions

# 需要导入模块: from distributed import Executor [as 别名]
# 或者: from distributed.Executor import map [as 别名]
def test_no_divisions(s, a, b):
    e = Executor((s.ip, s.port), start=False)
    yield e._start()
    dfs = e.map(tm.makeTimeDataFrame, range(5, 10))

    df = yield _futures_to_dask_dataframe(dfs)
    assert not df.known_divisions
    assert list(df.columns) == list(tm.makeTimeDataFrame(5).columns)
开发者ID:lucashtnguyen,项目名称:distributed,代码行数:10,代码来源:test_collections.py

示例6: f

# 需要导入模块: from distributed import Executor [as 别名]
# 或者: from distributed.Executor import map [as 别名]
    def f(c, a, b):
        e = Executor((c.ip, c.port), start=False)
        IOLoop.current().spawn_callback(e._go)

        remote_dfs = e.map(lambda x: x, dfs)
        ddf = yield _futures_to_dask_dataframe(e, remote_dfs, divisions=True)

        assert isinstance(ddf, dd.DataFrame)
        assert ddf.divisions == (0, 30, 60, 80)
        expr = ddf.x.sum()
        result = yield e._get(expr.dask, expr._keys())
        assert result == [sum([df.x.sum() for df in dfs])]

        yield e._shutdown()
开发者ID:thrasibule,项目名称:distributed,代码行数:16,代码来源:test_collections.py

示例7: test__futures_to_dask_dataframe

# 需要导入模块: from distributed import Executor [as 别名]
# 或者: from distributed.Executor import map [as 别名]
def test__futures_to_dask_dataframe(s, a, b):
    e = Executor((s.ip, s.port), start=False)
    yield e._start()

    remote_dfs = e.map(identity, dfs)
    ddf = yield _futures_to_dask_dataframe(remote_dfs, divisions=True,
            executor=e)

    assert isinstance(ddf, dd.DataFrame)
    assert ddf.divisions == (0, 30, 60, 80)
    expr = ddf.x.sum()
    result = yield e._get(expr.dask, expr._keys())
    assert result == [sum([df.x.sum() for df in dfs])]

    yield e._shutdown()
开发者ID:lucashtnguyen,项目名称:distributed,代码行数:17,代码来源:test_collections.py

示例8: f

# 需要导入模块: from distributed import Executor [as 别名]
# 或者: from distributed.Executor import map [as 别名]
    def f(c, a, b):
        e = Executor((c.ip, c.port), start=False, loop=loop)
        yield e._start()

        arrays = e.map(np.ones, [(5, 5)] * 6)
        y = yield _stack(arrays, axis=0)
        assert y.shape == (6, 5, 5)
        assert y.chunks == ((1, 1, 1, 1, 1, 1), (5,), (5,))

        y_results = yield e._get(y.dask, y._keys())
        yy = da.Array._finalize(y, y_results)

        assert isinstance(yy, np.ndarray)
        assert yy.shape == y.shape
        assert (yy == 1).all()

        yield e._shutdown()
开发者ID:freeman-lab,项目名称:distributed,代码行数:19,代码来源:test_collections.py

示例9: test__stack

# 需要导入模块: from distributed import Executor [as 别名]
# 或者: from distributed.Executor import map [as 别名]
def test__stack(s, a, b):
    import dask.array as da
    e = Executor((s.ip, s.port), start=False)
    yield e._start()

    arrays = e.map(np.ones, [(5, 5)] * 6)
    y = yield _stack(arrays, axis=0)
    assert y.shape == (6, 5, 5)
    assert y.chunks == ((1, 1, 1, 1, 1, 1), (5,), (5,))

    y_result = e.compute(y)
    yy = yield y_result._result()

    assert isinstance(yy, np.ndarray)
    assert yy.shape == y.shape
    assert (yy == 1).all()

    yield e._shutdown()
开发者ID:canavandl,项目名称:distributed,代码行数:20,代码来源:test_collections.py

示例10: test_dataframes

# 需要导入模块: from distributed import Executor [as 别名]
# 或者: from distributed.Executor import map [as 别名]
def test_dataframes(s, a, b):
    e = Executor((s.ip, s.port), start=False)
    yield e._start()

    dfs = [pd.DataFrame({'x': np.random.random(100),
                         'y': np.random.random(100)},
                        index=list(range(i, i + 100)))
           for i in range(0, 100*10, 100)]

    remote_dfs = e.map(lambda x: x, dfs)
    rdf = yield _futures_to_dask_dataframe(remote_dfs, divisions=True)
    name = 'foo'
    ldf = dd.DataFrame({(name, i): df for i, df in enumerate(dfs)},
                       name, dfs[0].columns,
                       list(range(0, 1000, 100)) + [999])

    assert rdf.divisions == ldf.divisions

    remote = e.compute(rdf)
    result = yield remote._result()

    tm.assert_frame_equal(result,
                          ldf.compute(get=dask.get))

    exprs = [lambda df: df.x.mean(),
             lambda df: df.y.std(),
             lambda df: df.assign(z=df.x + df.y).drop_duplicates(),
             lambda df: df.index,
             lambda df: df.x,
             lambda df: df.x.cumsum(),
             lambda df: df.loc[50:75]]
    for f in exprs:
        local = f(ldf).compute(get=dask.get)
        remote = e.compute(f(rdf))
        remote = yield gen.with_timeout(timedelta(seconds=5), remote._result())
        assert_equal(local, remote)

    yield e._shutdown()
开发者ID:canavandl,项目名称:distributed,代码行数:40,代码来源:test_collections.py

示例11: DistributedContext

# 需要导入模块: from distributed import Executor [as 别名]
# 或者: from distributed.Executor import map [as 别名]
class DistributedContext(object):
    io_loop = None
    io_thread = None

    def __init__(self,
                 ip="127.0.0.1",
                 port=8787,
                 spawn_workers=0,
                 write_partial_results=None,
                 track_progress=False,
                 time_limit=None,
                 job_observer=None):
        """
        :type ip: string
        :type port: int
        :type spawn_workers: int
        :type write_partial_results: int
        :type track_progress: bool
        :type time_limit: int
        :type job_observer: JobObserver
        """

        self.worker_count = spawn_workers
        self.ip = ip
        self.port = port
        self.active = False
        self.write_partial_results = write_partial_results
        self.track_progress = track_progress
        self.execution_count = 0
        self.timeout = TimeoutManager(time_limit) if time_limit else None
        self.job_observer = job_observer

        if not DistributedContext.io_loop:
            DistributedContext.io_loop = IOLoop()
            DistributedContext.io_thread = Thread(
                target=DistributedContext.io_loop.start)
            DistributedContext.io_thread.daemon = True
            DistributedContext.io_thread.start()

        if spawn_workers > 0:
            self.scheduler = self._create_scheduler()
            self.workers = [self._create_worker()
                            for i in xrange(spawn_workers)]
            time.sleep(0.5)  # wait for workers to spawn

        self.executor = Executor((ip, port))

    def run(self, domain,
            worker_reduce_fn, worker_reduce_init,
            global_reduce_fn, global_reduce_init):
        size = domain.steps
        assert size is not None  # TODO: Iterators without size

        workers = 0
        for name, value in self.executor.ncores().items():
            workers += value

        if workers == 0:
            raise Exception("There are no workers")

        batch_count = workers * 4
        batch_size = max(int(round(size / float(batch_count))), 1)
        batches = self._create_batches(batch_size, size, domain,
                                       worker_reduce_fn, worker_reduce_init)

        logging.info("Qit: starting {} batches with size {}".format(
            batch_count, batch_size))

        if self.job_observer:
            self.job_observer.on_computation_start(batch_count, batch_size)

        futures = self.executor.map(process_batch, batches)

        if self.track_progress:
            distributed.diagnostics.progress(futures)

        if self.write_partial_results is not None:
            result_saver = ResultSaver(self.execution_count,
                                       self.write_partial_results)
        else:
            result_saver = None

        timeouted = False
        results = []

        for future in as_completed(futures):
            job = future.result()
            if result_saver:
                result_saver.handle_result(job.result)
            if self.job_observer:
                self.job_observer.on_job_completed(job)

            results.append(job.result)

            if self.timeout and self.timeout.is_finished():
                logging.info("Qit: timeouted after {} seconds".format(
                    self.timeout.timeout))
                timeouted = True
                break

#.........这里部分代码省略.........
开发者ID:Kobzol,项目名称:pyqit,代码行数:103,代码来源:distributedcontext.py


注:本文中的distributed.Executor.map方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。