当前位置: 首页>>代码示例>>Python>>正文


Python Disco.tag方法代码示例

本文整理汇总了Python中disco.core.Disco.tag方法的典型用法代码示例。如果您正苦于以下问题:Python Disco.tag方法的具体用法?Python Disco.tag怎么用?Python Disco.tag使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在disco.core.Disco的用法示例。


在下文中一共展示了Disco.tag方法的1个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: fit_predict

# 需要导入模块: from disco.core import Disco [as 别名]
# 或者: from disco.core.Disco import tag [as 别名]
def fit_predict(training_data, fitting_data, tau=1, samples_per_job=0, save_results=True, show=False):
    from disco.worker.pipeline.worker import Worker, Stage
    from disco.core import Job, result_iterator
    from disco.core import Disco

    """
    training_data - training samples
    fitting_data - dataset to be fitted to training data.
    tau - controls how quickly the weight of a training sample falls off with distance of its x(i) from the query point x.
    samples_per_job - define a number of samples that will be processed in single mapreduce job. If 0, algorithm will calculate number of samples per job.
    """

    try:
        tau = float(tau)
        if tau <= 0:
            raise Exception("Parameter tau should be >= 0.")
    except ValueError:
        raise Exception("Parameter tau should be numerical.")

    if fitting_data.params["id_index"] == -1:
        raise Exception("Predict data should have id_index set.")

    job = Job(worker=Worker(save_results=save_results))
    job.pipeline = [
        ("split", Stage("map", input_chain=fitting_data.params["input_chain"], init=simple_init, process=map_predict))
    ]
    job.params = fitting_data.params
    job.run(name="lwlr_read_data", input=fitting_data.params["data_tag"])

    samples = {}
    results = []
    tau = float(2 * tau ** 2)  # calculate tau once
    counter = 0

    for test_id, x in result_iterator(job.wait(show=show)):
        if samples_per_job == 0:
            # calculate number of samples per job
            if len(x) <= 100:  # if there is less than 100 attributes
                samples_per_job = 100  # 100 samples is max per on job
            else:
                # there is more than 100 attributes
                samples_per_job = len(x) * -25 / 900.0 + 53  # linear function

        samples[test_id] = x
        if counter == samples_per_job:
            results.append(_fit_predict(training_data, samples, tau, save_results, show))
            counter = 0
            samples = {}
        counter += 1

    if len(samples) > 0:  # if there is some samples left in the the dictionary
        results.append(_fit_predict(training_data, samples, tau, save_results, show))

    # merge results of every iteration into a single tag
    ddfs = Disco().ddfs
    ddfs.tag(job.name, [[list(ddfs.blobs(tag))[0][0]] for tag in results])

    return ["tag://" + job.name]
开发者ID:romanorac,项目名称:discomll,代码行数:60,代码来源:locally_weighted_linear_regression.py


注:本文中的disco.core.Disco.tag方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。