本文整理汇总了Python中dipy.direction.ProbabilisticDirectionGetter类的典型用法代码示例。如果您正苦于以下问题:Python ProbabilisticDirectionGetter类的具体用法?Python ProbabilisticDirectionGetter怎么用?Python ProbabilisticDirectionGetter使用的例子?那么恭喜您, 这里精选的类代码示例或许可以为您提供帮助。
在下文中一共展示了ProbabilisticDirectionGetter类的12个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: test_ProbabilisticDirectionGetter
def test_ProbabilisticDirectionGetter():
# Test the constructors and errors of the ProbabilisticDirectionGetter
class SillyModel(SphHarmModel):
sh_order = 4
def fit(self, data, mask=None):
coeff = np.zeros(data.shape[:-1] + (15,))
return SphHarmFit(self, coeff, mask=None)
model = SillyModel(gtab=None)
data = np.zeros((3, 3, 3, 7))
# Test if the tracking works on different dtype of the same data.
for dtype in [np.float32, np.float64]:
fit = model.fit(data.astype(dtype))
# Sample point and direction
point = np.zeros(3)
dir = unit_octahedron.vertices[0].copy()
# make a dg from a fit
dg = ProbabilisticDirectionGetter.from_shcoeff(fit.shm_coeff, 90,
unit_octahedron)
state = dg.get_direction(point, dir)
npt.assert_equal(state, 1)
# Make a dg from a pmf
N = unit_octahedron.theta.shape[0]
pmf = np.zeros((3, 3, 3, N))
dg = ProbabilisticDirectionGetter.from_pmf(pmf, 90, unit_octahedron)
state = dg.get_direction(point, dir)
npt.assert_equal(state, 1)
# pmf shape must match sphere
bad_pmf = pmf[..., 1:]
npt.assert_raises(ValueError, ProbabilisticDirectionGetter.from_pmf,
bad_pmf, 90, unit_octahedron)
# pmf must have 4 dimensions
bad_pmf = pmf[0, ...]
npt.assert_raises(ValueError, ProbabilisticDirectionGetter.from_pmf,
bad_pmf, 90, unit_octahedron)
# pmf cannot have negative values
pmf[0, 0, 0, 0] = -1
npt.assert_raises(ValueError, ProbabilisticDirectionGetter.from_pmf,
pmf, 90, unit_octahedron)
# Check basis_type keyword
dg = ProbabilisticDirectionGetter.from_shcoeff(fit.shm_coeff, 90,
unit_octahedron,
basis_type="mrtrix")
npt.assert_raises(ValueError,
ProbabilisticDirectionGetter.from_shcoeff,
fit.shm_coeff, 90, unit_octahedron,
basis_type="not a basis")
示例2: tracking_prob
def tracking_prob(dir_src, dir_out, verbose=False):
wm_name = 'wm_mask_' + par_b_tag + '_' + par_dim_tag + '.nii.gz'
wm_mask, affine = load_nifti(pjoin(dir_src, wm_name), verbose)
sh_name = 'sh_' + par_b_tag + '_' + par_dim_tag + '.nii.gz'
sh, _ = load_nifti(pjoin(dir_src, sh_name), verbose)
sphere = get_sphere('symmetric724')
classifier = ThresholdTissueClassifier(wm_mask.astype('f8'), .5)
classifier = BinaryTissueClassifier(wm_mask)
max_dg = ProbabilisticDirectionGetter.from_shcoeff(sh, max_angle=par_trk_max_angle, sphere=sphere)
seeds = utils.seeds_from_mask(wm_mask, density=2, affine=affine)
streamlines = LocalTracking(max_dg, classifier, seeds, affine, step_size=par_trk_step_size)
streamlines = list(streamlines)
trk_name = 'tractogram_' + par_b_tag + '_' + par_dim_tag + '_' + par_trk_prob_tag + '.trk'
trk_out = os.path.join(dir_out, trk_name)
save_trk(trk_out, streamlines, affine, wm_mask.shape)
dpy_out = trk_out.replace('.trk', '.dpy')
dpy = Dpy(dpy_out, 'w')
dpy.write_tracks(streamlines)
dpy.close()
示例3: _get_direction_getter
def _get_direction_getter(self, strategy_name, pam, pmf_threshold,
max_angle):
"""Get Tracking Direction Getter object.
Parameters
----------
strategy_name: str
String representing direction getter name.
pam: instance of PeaksAndMetrics
An object with ``gfa``, ``peak_directions``, ``peak_values``,
``peak_indices``, ``odf``, ``shm_coeffs`` as attributes.
pmf_threshold : float
Threshold for ODF functions.
max_angle : float
Maximum angle between streamline segments.
Returns
-------
direction_getter : instance of DirectionGetter
Used to get directions for fiber tracking.
"""
dg, msg = None, ''
if strategy_name.lower() in ["deterministic", "det"]:
msg = "Deterministic"
dg = DeterministicMaximumDirectionGetter.from_shcoeff(
pam.shm_coeff,
sphere=pam.sphere,
max_angle=max_angle,
pmf_threshold=pmf_threshold)
elif strategy_name.lower() in ["probabilistic", "prob"]:
msg = "Probabilistic"
dg = ProbabilisticDirectionGetter.from_shcoeff(
pam.shm_coeff,
sphere=pam.sphere,
max_angle=max_angle,
pmf_threshold=pmf_threshold)
elif strategy_name.lower() in ["closestpeaks", "cp"]:
msg = "ClosestPeaks"
dg = ClosestPeakDirectionGetter.from_shcoeff(
pam.shm_coeff,
sphere=pam.sphere,
max_angle=max_angle,
pmf_threshold=pmf_threshold)
elif strategy_name.lower() in ["eudx", ]:
msg = "Eudx"
dg = pam
else:
msg = "No direction getter defined. Eudx"
dg = pam
logging.info('{0} direction getter strategy selected'.format(msg))
return dg
示例4: _get_direction_getter
def _get_direction_getter(self, strategy_name, pam, pmf_threshold=0.1,
max_angle=30.):
"""Get Tracking Direction Getter object.
Parameters
----------
strategy_name: str
string representing direction getter name
Returns
-------
direction_getter : instance of DirectionGetter
Used to get directions for fiber tracking.
"""
dg, msg = None, ''
if strategy_name.lower() in ["deterministic", "det"]:
msg = "Deterministic"
dg = DeterministicMaximumDirectionGetter.from_shcoeff(
pam.shm_coeff,
sphere=pam.sphere,
max_angle=max_angle,
pmf_threshold=pmf_threshold)
elif strategy_name.lower() in ["probabilistic", "prob"]:
msg = "Probabilistic"
dg = ProbabilisticDirectionGetter.from_shcoeff(
pam.shm_coeff,
sphere=pam.sphere,
max_angle=max_angle,
pmf_threshold=pmf_threshold)
elif strategy_name.lower() in ["closestpeaks", "cp"]:
msg = "ClosestPeaks"
dg = ClosestPeakDirectionGetter.from_shcoeff(
pam.shm_coeff,
sphere=pam.sphere,
max_angle=max_angle,
pmf_threshold=pmf_threshold)
elif strategy_name.lower() in ["eudx", ]:
msg = "Eudx"
dg = pam
else:
msg = "No direction getter defined. Deterministic"
dg = DeterministicMaximumDirectionGetter.from_shcoeff(
pam.shm_coeff,
sphere=pam.sphere,
max_angle=max_angle,
pmf_threshold=pmf_threshold)
logging.info('{0} direction getter strategy selected'.format(msg))
return dg
示例5: auto_response
response, ratio = auto_response(gtab, data, roi_radius=10, fa_thr=0.7)
csd_model = ConstrainedSphericalDeconvModel(gtab, response, sh_order=6)
csd_fit = csd_model.fit(data, mask=white_matter)
"""
Next we'll need to make a ``ProbabilisticDirectionGetter``. Because the CSD
model represents the FOD using the spherical harmonic basis, we can use the
``from_shcoeff`` method to create the direction getter. This direction getter
will randomly sample directions from the FOD each time the tracking algorithm
needs to take another step.
"""
from dipy.direction import ProbabilisticDirectionGetter
prob_dg = ProbabilisticDirectionGetter.from_shcoeff(csd_fit.shm_coeff,
max_angle=30.,
sphere=default_sphere)
"""
As with deterministic tracking, we'll need to use a tissue classifier to
restrict the tracking to the white matter of the brain. One might be tempted
to use the GFA of the CSD FODs to build a tissue classifier, however the GFA
values of these FODs don't classify gray matter and white matter well. We will
therefore use the GFA from the CSA model which we fit for the first section of
this example. Alternatively, one could fit a ``TensorModel`` to the data and use
the fractional anisotropy (FA) to build a tissue classifier.
"""
classifier = ThresholdTissueClassifier(csa_peaks.gfa, .25)
"""
示例6: _run_interface
def _run_interface(self, runtime):
import numpy as np
import nibabel as nib
from dipy.io import read_bvals_bvecs
from dipy.core.gradients import gradient_table
from nipype.utils.filemanip import split_filename
# Loading the data
fname = self.inputs.in_file
img = nib.load(fname)
data = img.get_data()
affine = img.get_affine()
FA_fname = self.inputs.FA_file
FA_img = nib.load(FA_fname)
fa = FA_img.get_data()
affine = FA_img.get_affine()
affine = np.matrix.round(affine)
mask_fname = self.inputs.brain_mask
mask_img = nib.load(mask_fname)
mask = mask_img.get_data()
bval_fname = self.inputs.bval
bvals = np.loadtxt(bval_fname)
bvec_fname = self.inputs.bvec
bvecs = np.loadtxt(bvec_fname)
bvecs = np.vstack([bvecs[0,:],bvecs[1,:],bvecs[2,:]]).T
gtab = gradient_table(bvals, bvecs)
# Creating a white matter mask
fa = fa*mask
white_matter = fa >= 0.2
# Creating a seed mask
from dipy.tracking import utils
seeds = utils.seeds_from_mask(white_matter, density=[2, 2, 2], affine=affine)
# Fitting the CSA model
from dipy.reconst.shm import CsaOdfModel
from dipy.data import default_sphere
from dipy.direction import peaks_from_model
csa_model = CsaOdfModel(gtab, sh_order=8)
csa_peaks = peaks_from_model(csa_model, data, default_sphere,
relative_peak_threshold=.8,
min_separation_angle=45,
mask=white_matter)
from dipy.tracking.local import ThresholdTissueClassifier
classifier = ThresholdTissueClassifier(csa_peaks.gfa, .25)
# CSD model
from dipy.reconst.csdeconv import (ConstrainedSphericalDeconvModel, auto_response)
response, ratio = auto_response(gtab, data, roi_radius=10, fa_thr=0.7)
csd_model = ConstrainedSphericalDeconvModel(gtab, response, sh_order=8)
csd_fit = csd_model.fit(data, mask=white_matter)
from dipy.direction import ProbabilisticDirectionGetter
prob_dg = ProbabilisticDirectionGetter.from_shcoeff(csd_fit.shm_coeff,
max_angle=45.,
sphere=default_sphere)
# Tracking
from dipy.tracking.local import LocalTracking
streamlines = LocalTracking(prob_dg, classifier, seeds, affine,
step_size=.5, maxlen=200, max_cross=1)
# Compute streamlines and store as a list.
streamlines = list(streamlines)
# Saving the trackfile
from dipy.io.trackvis import save_trk
_, base, _ = split_filename(fname)
save_trk(base + '_CSDprob.trk', streamlines, affine, fa.shape)
return runtime
示例7: test_particle_filtering_tractography
def test_particle_filtering_tractography():
"""This tests that the ParticleFilteringTracking produces
more streamlines connecting the gray matter than LocalTracking.
"""
sphere = get_sphere('repulsion100')
step_size = 0.2
# Simple tissue masks
simple_wm = np.array([[0, 0, 0, 0, 0, 0],
[0, 0, 1, 0, 0, 0],
[0, 1, 1, 1, 0, 0],
[0, 1, 1, 1, 0, 0],
[0, 0, 0, 0, 0, 0]])
simple_wm = np.dstack([np.zeros(simple_wm.shape),
simple_wm,
simple_wm,
simple_wm,
np.zeros(simple_wm.shape)])
simple_gm = np.array([[1, 1, 0, 0, 0, 0],
[1, 1, 0, 0, 0, 0],
[0, 1, 0, 0, 1, 0],
[0, 0, 0, 0, 1, 0],
[0, 0, 0, 0, 0, 0]])
simple_gm = np.dstack([np.zeros(simple_gm.shape),
simple_gm,
simple_gm,
simple_gm,
np.zeros(simple_gm.shape)])
simple_csf = np.ones(simple_wm.shape) - simple_wm - simple_gm
tc = ActTissueClassifier.from_pve(simple_wm, simple_gm, simple_csf)
seeds = seeds_from_mask(simple_wm, density=2)
# Random pmf in every voxel
shape_img = list(simple_wm.shape)
shape_img.extend([sphere.vertices.shape[0]])
np.random.seed(0) # Random number generator initialization
pmf = np.random.random(shape_img)
# Test that PFT recover equal or more streamlines than localTracking
dg = ProbabilisticDirectionGetter.from_pmf(pmf, 60, sphere)
local_streamlines_generator = LocalTracking(dg, tc, seeds, np.eye(4),
step_size, max_cross=1,
return_all=False)
local_streamlines = Streamlines(local_streamlines_generator)
pft_streamlines_generator = ParticleFilteringTracking(
dg, tc, seeds, np.eye(4), step_size, max_cross=1, return_all=False,
pft_back_tracking_dist=1, pft_front_tracking_dist=0.5)
pft_streamlines = Streamlines(pft_streamlines_generator)
npt.assert_(np.array([len(pft_streamlines) > 0]))
npt.assert_(np.array([len(pft_streamlines) >= len(local_streamlines)]))
# Test that all points are equally spaced
for l in [1, 2, 5, 10, 100]:
pft_streamlines = ParticleFilteringTracking(dg, tc, seeds, np.eye(4),
step_size, max_cross=1,
return_all=True, maxlen=l)
for s in pft_streamlines:
for i in range(len(s) - 1):
npt.assert_almost_equal(np.linalg.norm(s[i] - s[i + 1]),
step_size)
# Test that all points are within the image volume
seeds = seeds_from_mask(np.ones(simple_wm.shape), density=1)
pft_streamlines_generator = ParticleFilteringTracking(
dg, tc, seeds, np.eye(4), step_size, max_cross=1, return_all=True)
pft_streamlines = Streamlines(pft_streamlines_generator)
for s in pft_streamlines:
npt.assert_(np.all((s + 0.5).astype(int) >= 0))
npt.assert_(np.all((s + 0.5).astype(int) < simple_wm.shape))
# Test that the number of streamline return with return_all=True equal the
# number of seeds places
npt.assert_(np.array([len(pft_streamlines) == len(seeds)]))
# Test non WM seed position
seeds = [[0, 5, 4], [0, 0, 1], [50, 50, 50]]
pft_streamlines_generator = ParticleFilteringTracking(
dg, tc, seeds, np.eye(4), step_size, max_cross=1, return_all=True)
pft_streamlines = Streamlines(pft_streamlines_generator)
npt.assert_equal(len(pft_streamlines[0]), 3) # INVALIDPOINT
npt.assert_equal(len(pft_streamlines[1]), 3) # ENDPOINT
npt.assert_equal(len(pft_streamlines[2]), 1) # OUTSIDEIMAGE
# Test with wrong tissueclassifier type
tc_bin = BinaryTissueClassifier(simple_wm)
npt.assert_raises(ValueError,
lambda: ParticleFilteringTracking(dg, tc_bin, seeds,
np.eye(4), step_size))
# Test with invalid back/front tracking distances
npt.assert_raises(
ValueError,
lambda: ParticleFilteringTracking(dg, tc, seeds, np.eye(4), step_size,
pft_back_tracking_dist=0,
pft_front_tracking_dist=0))
npt.assert_raises(
ValueError,
lambda: ParticleFilteringTracking(dg, tc, seeds, np.eye(4), step_size,
#.........这里部分代码省略.........
示例8: test_stop_conditions
def test_stop_conditions():
"""This tests that the Local Tracker behaves as expected for the
following tissue types.
"""
# TissueTypes.TRACKPOINT = 1
# TissueTypes.ENDPOINT = 2
# TissueTypes.INVALIDPOINT = 0
tissue = np.array([[2, 1, 1, 2, 1],
[2, 2, 1, 1, 2],
[1, 1, 1, 1, 1],
[1, 1, 1, 2, 2],
[0, 1, 1, 1, 2],
[0, 1, 1, 0, 2],
[1, 0, 1, 1, 1]])
tissue = tissue[None]
sphere = HemiSphere.from_sphere(unit_octahedron)
pmf_lookup = np.array([[0., 0., 0., ],
[0., 0., 1.]])
pmf = pmf_lookup[(tissue > 0).astype("int")]
# Create a seeds along
x = np.array([0., 0, 0, 0, 0, 0, 0])
y = np.array([0., 1, 2, 3, 4, 5, 6])
z = np.array([1., 1, 1, 0, 1, 1, 1])
seeds = np.column_stack([x, y, z])
# Set up tracking
endpoint_mask = tissue == TissueTypes.ENDPOINT
invalidpoint_mask = tissue == TissueTypes.INVALIDPOINT
tc = ActTissueClassifier(endpoint_mask, invalidpoint_mask)
dg = ProbabilisticDirectionGetter.from_pmf(pmf, 60, sphere)
# valid streamlines only
streamlines_generator = LocalTracking(direction_getter=dg,
tissue_classifier=tc,
seeds=seeds,
affine=np.eye(4),
step_size=1.,
return_all=False)
streamlines_not_all = iter(streamlines_generator)
# all streamlines
streamlines_all_generator = LocalTracking(direction_getter=dg,
tissue_classifier=tc,
seeds=seeds,
affine=np.eye(4),
step_size=1.,
return_all=True)
streamlines_all = iter(streamlines_all_generator)
# Check that the first streamline stops at 0 and 3 (ENDPOINT)
y = 0
sl = next(streamlines_not_all)
npt.assert_equal(sl[0], [0, y, 0])
npt.assert_equal(sl[-1], [0, y, 3])
npt.assert_equal(len(sl), 4)
sl = next(streamlines_all)
npt.assert_equal(sl[0], [0, y, 0])
npt.assert_equal(sl[-1], [0, y, 3])
npt.assert_equal(len(sl), 4)
# Check that the first streamline stops at 0 and 4 (ENDPOINT)
y = 1
sl = next(streamlines_not_all)
npt.assert_equal(sl[0], [0, y, 0])
npt.assert_equal(sl[-1], [0, y, 4])
npt.assert_equal(len(sl), 5)
sl = next(streamlines_all)
npt.assert_equal(sl[0], [0, y, 0])
npt.assert_equal(sl[-1], [0, y, 4])
npt.assert_equal(len(sl), 5)
# This streamline should be the same as above. This row does not have
# ENDPOINTs, but the streamline should stop at the edge and not include
# OUTSIDEIMAGE points.
y = 2
sl = next(streamlines_not_all)
npt.assert_equal(sl[0], [0, y, 0])
npt.assert_equal(sl[-1], [0, y, 4])
npt.assert_equal(len(sl), 5)
sl = next(streamlines_all)
npt.assert_equal(sl[0], [0, y, 0])
npt.assert_equal(sl[-1], [0, y, 4])
npt.assert_equal(len(sl), 5)
# If we seed on the edge, the first (or last) point in the streamline
# should be the seed.
y = 3
sl = next(streamlines_not_all)
npt.assert_equal(sl[0], seeds[y])
sl = next(streamlines_all)
npt.assert_equal(sl[0], seeds[y])
# The last 3 seeds should not produce streamlines,
# INVALIDPOINT streamlines are rejected (return_all=False).
#.........这里部分代码省略.........
示例9: test_probabilistic_odf_weighted_tracker
def test_probabilistic_odf_weighted_tracker():
"""This tests that the Probabalistic Direction Getter plays nice
LocalTracking and produces reasonable streamlines in a simple example.
"""
sphere = HemiSphere.from_sphere(unit_octahedron)
# A simple image with three possible configurations, a vertical tract,
# a horizontal tract and a crossing
pmf_lookup = np.array([[0., 0., 1.],
[1., 0., 0.],
[0., 1., 0.],
[.6, .4, 0.]])
simple_image = np.array([[0, 1, 0, 0, 0, 0],
[0, 1, 0, 0, 0, 0],
[0, 3, 2, 2, 2, 0],
[0, 1, 0, 0, 0, 0],
[0, 1, 0, 0, 0, 0],
])
simple_image = simple_image[..., None]
pmf = pmf_lookup[simple_image]
seeds = [np.array([1., 1., 0.])] * 30
mask = (simple_image > 0).astype(float)
tc = ThresholdTissueClassifier(mask, .5)
dg = ProbabilisticDirectionGetter.from_pmf(pmf, 90, sphere,
pmf_threshold=0.1)
streamlines = LocalTracking(dg, tc, seeds, np.eye(4), 1.)
expected = [np.array([[0., 1., 0.],
[1., 1., 0.],
[2., 1., 0.],
[2., 2., 0.],
[2., 3., 0.],
[2., 4., 0.],
[2., 5., 0.]]),
np.array([[0., 1., 0.],
[1., 1., 0.],
[2., 1., 0.],
[3., 1., 0.],
[4., 1., 0.]])]
def allclose(x, y):
return x.shape == y.shape and np.allclose(x, y)
path = [False, False]
for sl in streamlines:
if allclose(sl, expected[0]):
path[0] = True
elif allclose(sl, expected[1]):
path[1] = True
else:
raise AssertionError()
npt.assert_(all(path))
# The first path is not possible if 90 degree turns are excluded
dg = ProbabilisticDirectionGetter.from_pmf(pmf, 80, sphere,
pmf_threshold=0.1)
streamlines = LocalTracking(dg, tc, seeds, np.eye(4), 1.)
for sl in streamlines:
npt.assert_(np.allclose(sl, expected[1]))
# The first path is not possible if pmf_threshold > 0.67
# 0.4/0.6 < 2/3, multiplying the pmf should not change the ratio
dg = ProbabilisticDirectionGetter.from_pmf(10*pmf, 90, sphere,
pmf_threshold=0.67)
streamlines = LocalTracking(dg, tc, seeds, np.eye(4), 1.)
for sl in streamlines:
npt.assert_(np.allclose(sl, expected[1]))
# Test non WM seed position
seeds = [[0, 0, 0], [5, 5, 5]]
streamlines = LocalTracking(dg, tc, seeds, np.eye(4), 0.2, max_cross=1,
return_all=True)
streamlines = Streamlines(streamlines)
npt.assert_(len(streamlines[0]) == 3) # INVALIDPOINT
npt.assert_(len(streamlines[1]) == 1) # OUTSIDEIMAGE
# Test that all points are within the image volume
seeds = seeds_from_mask(np.ones(mask.shape), density=2)
streamline_generator = LocalTracking(dg, tc, seeds, np.eye(4), 0.5,
return_all=True)
streamlines = Streamlines(streamline_generator)
for s in streamlines:
npt.assert_(np.all((s + 0.5).astype(int) >= 0))
npt.assert_(np.all((s + 0.5).astype(int) < mask.shape))
# Test that the number of streamline return with return_all=True equal the
# number of seeds places
npt.assert_(np.array([len(streamlines) == len(seeds)]))
# Test reproducibility
tracking_1 = Streamlines(LocalTracking(dg, tc, seeds, np.eye(4),
0.5,
random_seed=0)).data
tracking_2 = Streamlines(LocalTracking(dg, tc, seeds, np.eye(4),
#.........这里部分代码省略.........
示例10: test_ProbabilisticOdfWeightedTracker
def test_ProbabilisticOdfWeightedTracker():
"""This tests that the Probabalistic Direction Getter plays nice
LocalTracking and produces reasonable streamlines in a simple example.
"""
sphere = HemiSphere.from_sphere(unit_octahedron)
# A simple image with three possible configurations, a vertical tract,
# a horizontal tract and a crossing
pmf_lookup = np.array([[0., 0., 1.],
[1., 0., 0.],
[0., 1., 0.],
[.5, .5, 0.]])
simple_image = np.array([[0, 1, 0, 0, 0, 0],
[0, 1, 0, 0, 0, 0],
[0, 3, 2, 2, 2, 0],
[0, 1, 0, 0, 0, 0],
[0, 1, 0, 0, 0, 0],
])
simple_image = simple_image[..., None]
pmf = pmf_lookup[simple_image]
seeds = [np.array([1., 1., 0.])] * 30
mask = (simple_image > 0).astype(float)
tc = ThresholdTissueClassifier(mask, .5)
dg = ProbabilisticDirectionGetter.from_pmf(pmf, 90, sphere)
streamlines = LocalTracking(dg, tc, seeds, np.eye(4), 1.)
expected = [np.array([[ 0., 1., 0.],
[ 1., 1., 0.],
[ 2., 1., 0.],
[ 2., 2., 0.],
[ 2., 3., 0.],
[ 2., 4., 0.],
[ 2., 5., 0.]]),
np.array([[ 0., 1., 0.],
[ 1., 1., 0.],
[ 2., 1., 0.],
[ 3., 1., 0.],
[ 4., 1., 0.]])
]
def allclose(x, y):
return x.shape == y.shape and np.allclose(x, y)
path = [False, False]
for sl in streamlines:
dir = ( -sphere.vertices[0] ).copy()
if allclose(sl, expected[0]):
path[0] = True
elif allclose(sl, expected[1]):
path[1] = True
else:
raise AssertionError()
npt.assert_(all(path))
# The first path is not possible if 90 degree turns are excluded
dg = ProbabilisticDirectionGetter.from_pmf(pmf, 80, sphere)
streamlines = LocalTracking(dg, tc, seeds, np.eye(4), 1.)
for sl in streamlines:
npt.assert_(np.allclose(sl, expected[1]))
示例11: LocalTracking
det_streamline_generator = LocalTracking(pam,
cmc_classifier,
seeds,
affine,
step_size=step_size)
# The line below is failing not sure why
# detstreamlines = Streamlines(det_streamline_generator)
detstreamlines = list(det_streamline_generator)
detstreamlines = Streamlines(detstreamlines)
save_trk('det.trk', detstreamlines, affine=np.eye(4),
vox_size=vox_size, shape=shape)
dg = ProbabilisticDirectionGetter.from_shcoeff(pam.shm_coeff,
max_angle=20.,
sphere=sphere)
# Particle Filtering Tractography
pft_streamline_generator = ParticleFilteringTracking(dg,
cmc_classifier,
seeds,
affine,
max_cross=1,
step_size=step_size,
maxlen=1000,
pft_back_tracking_dist=2,
pft_front_tracking_dist=1,
particle_count=15,
return_all=False)
# The line below is failing not sure why
示例12: LocalTracking
distribution of small fiber bundles within each voxel. We can use this
distribution for probabilistic fiber tracking. One way to do this is to
represent the FOD using a discrete sphere. This discrete FOD can be used by the
Probabilistic Direction Getter as a PMF for sampling tracking directions. We
need to clip the FOD to use it as a PMF because the latter cannot have negative
values. (Ideally the FOD should be strictly positive, but because of noise
and/or model failures sometimes it can have negative values).
"""
from dipy.direction import ProbabilisticDirectionGetter
from dipy.data import small_sphere
from dipy.io.trackvis import save_trk
fod = csd_fit.odf(small_sphere)
pmf = fod.clip(min=0)
prob_dg = ProbabilisticDirectionGetter.from_pmf(pmf, max_angle=30.0, sphere=small_sphere)
streamlines = LocalTracking(prob_dg, classifier, seeds, affine, step_size=0.5)
save_trk("probabilistic_small_sphere.trk", streamlines, affine, labels.shape)
"""
One disadvantage of using a discrete PMF to represent possible tracking
directions is that it tends to take up a lot of memory (RAM). The size of the
PMF, the FOD in this case, must be equal to the number of possible tracking
directions on the hemisphere, and every voxel has a unique PMF. In this case
the data is ``(81, 106, 76)`` and ``small_sphere`` has 181 directions so the
FOD is ``(81, 106, 76, 181)``. One way to avoid sampling the PMF and holding it
in memory is to build the direction getter directly from the spherical harmonic
representation of the FOD. By using this approach, we can also use a larger
sphere, like ``default_sphere`` which has 362 directions on the hemisphere,
without having to worry about memory limitations.
"""