当前位置: 首页>>代码示例>>Python>>正文


Python Model.addEquivalentClass方法代码示例

本文整理汇总了Python中dipper.models.Model.Model.addEquivalentClass方法的典型用法代码示例。如果您正苦于以下问题:Python Model.addEquivalentClass方法的具体用法?Python Model.addEquivalentClass怎么用?Python Model.addEquivalentClass使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在dipper.models.Model.Model的用法示例。


在下文中一共展示了Model.addEquivalentClass方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: _map_eom_terms

# 需要导入模块: from dipper.models.Model import Model [as 别名]
# 或者: from dipper.models.Model.Model import addEquivalentClass [as 别名]
    def _map_eom_terms(self, raw, limit=None):
        """
        This table contains the HP ID mappings from the local tsv file.
        Triples:
            <eom id> owl:equivalentClass <hp id>
        :param raw:
        :param limit:
        :return:
        """

        model = Model(self.graph)
        line_counter = 0
        with open(raw, 'r') as f1:
            f1.readline()  # read the header row; skip
            for line in f1:
                line_counter += 1
                row = line.split('\t')
                (
                    morphology_term_id, morphology_term_label, hp_id, hp_label,
                    notes) = row

                # Sub out the underscores for colons.
                hp_id = re.sub('_', ':', hp_id)
                if re.match(".*HP:.*", hp_id):
                    # add the HP term as a class
                    model.addClassToGraph(hp_id, None)
                    # Add the HP ID as an equivalent class
                    model.addEquivalentClass(morphology_term_id, hp_id)
                else:
                    LOG.warning('No matching HP term for %s', morphology_term_label)

                if limit is not None and line_counter > limit:
                    break

        return
开发者ID:TomConlin,项目名称:dipper,代码行数:37,代码来源:EOM.py

示例2: _add_gene_equivalencies

# 需要导入模块: from dipper.models.Model import Model [as 别名]
# 或者: from dipper.models.Model.Model import addEquivalentClass [as 别名]
    def _add_gene_equivalencies(self, xrefs, gene_id, taxon):
        """
        Add equivalentClass and sameAs relationships

        Uses external resource map located in
        /resources/clique_leader.yaml to determine
        if an NCBITaxon ID space is a clique leader
        """

        clique_map = self.open_and_parse_yaml(self.resources['clique_leader'])

        if self.test_mode:
            graph = self.testgraph
        else:
            graph = self.graph
        model = Model(graph)
        filter_out = ['Vega', 'IMGT/GENE-DB', 'Araport']

        # deal with the dbxrefs
        # MIM:614444|HGNC:HGNC:16851|Ensembl:ENSG00000136828|HPRD:11479|Vega:OTTHUMG00000020696

        for dbxref in xrefs.strip().split('|'):
            prefix = ':'.join(dbxref.split(':')[:-1]).strip()
            if prefix in self.localtt:
                prefix = self.localtt[prefix]
            dbxref_curie = ':'.join((prefix, dbxref.split(':')[-1]))

            if dbxref_curie is not None and prefix != '':
                if prefix == 'HPRD':  # proteins are not == genes.
                    model.addTriple(
                        gene_id, self.globaltt['has gene product'], dbxref_curie)
                    continue
                    # skip some of these for now based on curie prefix
                if prefix in filter_out:
                    continue

                if prefix == 'ENSEMBL':
                    model.addXref(gene_id, dbxref_curie)
                if prefix == 'OMIM':
                    if dbxref_curie in self.omim_replaced:
                        repl = self.omim_replaced[dbxref_curie]
                        for omim in repl:
                            if omim in self.omim_type and \
                                    self.omim_type[omim] == self.globaltt['gene']:
                                dbxref_curie = omim
                    if dbxref_curie in self.omim_type and \
                            self.omim_type[dbxref_curie] != self.globaltt['gene']:
                        continue
                try:
                    if self.class_or_indiv.get(gene_id) == 'C':
                        model.addEquivalentClass(gene_id, dbxref_curie)
                        if taxon in clique_map:
                            if clique_map[taxon] == prefix:
                                model.makeLeader(dbxref_curie)
                            elif clique_map[taxon] == gene_id.split(':')[0]:
                                model.makeLeader(gene_id)
                    else:
                        model.addSameIndividual(gene_id, dbxref_curie)
                except AssertionError as err:
                    LOG.warning("Error parsing %s: %s", gene_id, err)
开发者ID:monarch-initiative,项目名称:dipper,代码行数:62,代码来源:NCBIGene.py

示例3: _add_gene_equivalencies

# 需要导入模块: from dipper.models.Model import Model [as 别名]
# 或者: from dipper.models.Model.Model import addEquivalentClass [as 别名]
    def _add_gene_equivalencies(self, xrefs, gene_id, taxon):
        """
        Add equivalentClass and sameAs relationships

        Uses external resource map located in
        /resources/clique_leader.yaml to determine
        if an ID space is a clique leader
        """

        clique_map = self.open_and_parse_yaml(self.resources['clique_leader'])

        if self.testMode:
            graph = self.testgraph
        else:
            graph = self.graph

        filter_out = ['Vega', 'IMGT/GENE-DB', 'Araport']
        taxon_spec_filters = {
            '10090': ['ENSEMBL']
        }
        if taxon in taxon_spec_filters:
            filter_out += taxon_spec_filters[taxon]

        model = Model(graph)
        # deal with the xrefs
        # MIM:614444|HGNC:HGNC:16851|Ensembl:ENSG00000136828|HPRD:11479|Vega:OTTHUMG00000020696
        for ref in xrefs.strip().split('|'):
            xref_curie = self._cleanup_id(ref)
            if xref_curie is not None and xref_curie.strip() != '':
                if re.match(r'HPRD', xref_curie):
                    # proteins are not == genes.
                    model.addTriple(
                        gene_id,
                        self.properties['has_gene_product'], xref_curie)
                    continue
                    # skip some of these for now
                if xref_curie.split(':')[0] in filter_out:
                    continue
                if re.match(r'^OMIM', xref_curie):
                    if DipperUtil.is_omim_disease(xref_curie):
                        continue
                try:
                    if self.class_or_indiv.get(gene_id) == 'C':
                        model.addEquivalentClass(
                            gene_id, xref_curie)
                        if int(taxon) in clique_map:
                            if clique_map[int(taxon)] == xref_curie.split(':')[0]:
                                model.makeLeader(xref_curie)
                            elif clique_map[int(taxon)] == gene_id.split(':')[0]:
                                model.makeLeader(gene_id)
                    else:
                        model.addSameIndividual(gene_id, xref_curie)
                except AssertionError as e:
                    logger.warn("Error parsing {0}: {1}".format(gene_id, e))
        return
开发者ID:kshefchek,项目名称:dipper,代码行数:57,代码来源:NCBIGene.py

示例4: _process_trait_mappings

# 需要导入模块: from dipper.models.Model import Model [as 别名]
# 或者: from dipper.models.Model.Model import addEquivalentClass [as 别名]
    def _process_trait_mappings(self, raw, limit=None):
        """
        This method mapps traits from/to ...

        Triples created:

        :param limit:
        :return:
        """
        if self.test_mode:
            graph = self.testgraph
        else:
            graph = self.graph
        line_counter = 0
        model = Model(graph)

        with open(raw, 'r') as csvfile:
            filereader = csv.reader(csvfile, delimiter=',', quotechar='\"')
            next(filereader, None)  # skip header line
            for row in filereader:
                line_counter += 1
                # need to skip the last line
                if len(row) < 8:
                    LOG.info("skipping line %d: %s", line_counter, '\t'.join(row))
                    continue
                (vto_id, pto_id, cmo_id, ato_column, species, trait_class,
                 trait_type, qtl_count) = row

                ato_id = re.sub(
                    r'ATO #', 'AQTLTrait:', re.sub(
                        r'\].*', '', re.sub(r'\[', '', ato_column)))
                ato_id = ato_id.strip()

                ato_label = re.sub(r'.*\]\s*', '', ato_column)

                model.addClassToGraph(ato_id, ato_label.strip())

                if re.match(r'VT:.*', vto_id):
                    model.addClassToGraph(vto_id, None)
                    model.addEquivalentClass(ato_id, vto_id)
                if re.match(r'LPT:.*', pto_id):
                    model.addClassToGraph(pto_id, None)
                    model.addXref(ato_id, pto_id)
                if re.match(r'CMO:.*', cmo_id):
                    model.addClassToGraph(cmo_id, None)
                    model.addXref(ato_id, cmo_id)

        LOG.info("Done with trait mappings")
        return
开发者ID:TomConlin,项目名称:dipper,代码行数:51,代码来源:AnimalQTLdb.py

示例5: _get_mapped_gene_ids

# 需要导入模块: from dipper.models.Model import Model [as 别名]
# 或者: from dipper.models.Model.Model import addEquivalentClass [as 别名]
    def _get_mapped_gene_ids(self, entry, g):

        gene_ids = []
        model = Model(g)
        omimid = 'OMIM:'+str(entry['mimNumber'])
        if 'externalLinks' in entry:
            links = entry['externalLinks']
            omimtype = self._get_omimtype(entry)
            if 'geneIDs' in links:
                entrez_mappings = links['geneIDs']
                gene_ids = entrez_mappings.split(',')
                self.omim_ncbigene_idmap[omimid] = gene_ids
                if omimtype == Genotype.genoparts['gene']:
                    for i in gene_ids:
                        model.addEquivalentClass(omimid, 'NCBIGene:'+str(i))

        return gene_ids
开发者ID:kshefchek,项目名称:dipper,代码行数:19,代码来源:OMIM.py

示例6: _process_genes_kegg2ncbi

# 需要导入模块: from dipper.models.Model import Model [as 别名]
# 或者: from dipper.models.Model.Model import addEquivalentClass [as 别名]
    def _process_genes_kegg2ncbi(self, limit=None):
        """
        This method maps the KEGG human gene IDs
            to the corresponding NCBI Gene IDs.

        Triples created:
        <kegg_gene_id> is a class
        <ncbi_gene_id> is a class
        <kegg_gene_id> equivalentClass <ncbi_gene_id>
        :param limit:
        :return:

        """

        LOG.info("Processing KEGG gene IDs to NCBI gene IDs")
        if self.test_mode:
            graph = self.testgraph
        else:
            graph = self.graph
        model = Model(graph)

        raw = '/'.join((self.rawdir, self.files['ncbi']['file']))
        with open(raw, 'r', encoding="iso-8859-1") as csvfile:
            reader = csv.reader(csvfile, delimiter='\t', quotechar='\"')
            for row in reader:
                (kegg_gene_id, ncbi_gene_id, link_type) = row

                if self.test_mode and kegg_gene_id not in self.test_ids['genes']:
                    continue

                # Adjust the NCBI gene ID prefix.
                ncbi_gene_id = re.sub(r'ncbi-geneid', 'NCBIGene', ncbi_gene_id)
                kegg_gene_id = 'KEGG-' + kegg_gene_id

                # Adding the KEGG gene ID to the graph here is redundant,
                # unless there happens to be additional gene IDs in this table
                # not present in the genes table.
                model.addClassToGraph(kegg_gene_id, None)
                model.addClassToGraph(ncbi_gene_id, None)
                model.addEquivalentClass(kegg_gene_id, ncbi_gene_id)

                if not self.test_mode and (
                        limit is not None and reader.line_num > limit):
                    break
        LOG.info("Done with KEGG gene IDs to NCBI gene IDs")
开发者ID:TomConlin,项目名称:dipper,代码行数:47,代码来源:KEGG.py

示例7: _process_diseasegene

# 需要导入模块: from dipper.models.Model import Model [as 别名]
# 或者: from dipper.models.Model.Model import addEquivalentClass [as 别名]

#.........这里部分代码省略.........
                        config.get_config()['test_ids']['disease']:
                    continue

                disorder_label = elem.find('Name').text

                # make a hash of internal gene id to type for later lookup
                gene_iid_to_type = {}
                gene_list = elem.find('GeneList')
                for gene in gene_list.findall('Gene'):
                    gene_iid = gene.get('id')
                    gene_type = gene.find('GeneType').get('id')
                    gene_iid_to_type[gene_iid] = gene_type

                # assuming that these are in the ontology
                model.addClassToGraph(disorder_id, disorder_label)

                assoc_list = elem.find('DisorderGeneAssociationList')
                for a in assoc_list.findall('DisorderGeneAssociation'):
                    gene_iid = a.find('.//Gene').get('id')
                    gene_name = a.find('.//Gene/Name').text
                    gene_symbol = a.find('.//Gene/Symbol').text
                    gene_num = a.find('./Gene/OrphaNumber').text
                    gene_id = 'Orphanet:'+str(gene_num)
                    gene_type_id = \
                        self._map_gene_type_id(gene_iid_to_type[gene_iid])
                    model.addClassToGraph(
                        gene_id, gene_symbol, gene_type_id, gene_name)
                    syn_list = a.find('./Gene/SynonymList')
                    if int(syn_list.get('count')) > 0:
                        for s in syn_list.findall('./Synonym'):
                            model.addSynonym(gene_id, s.text)

                    dgtype = a.find('DisorderGeneAssociationType').get('id')
                    rel_id = self._map_rel_id(dgtype)
                    dg_label = \
                        a.find('./DisorderGeneAssociationType/Name').text
                    if rel_id is None:
                        logger.warning(
                            "Cannot map association type (%s) to RO " +
                            "for association (%s | %s).  Skipping.",
                            dg_label, disorder_label, gene_symbol)
                        continue

                    alt_locus_id = '_:'+gene_num+'-'+disorder_num+'VL'
                    alt_label = \
                        ' '.join(('some variant of', gene_symbol.strip(),
                                  'that is a', dg_label.lower(),
                                  disorder_label))

                    model.addIndividualToGraph(alt_locus_id, alt_label,
                                               geno.genoparts['variant_locus'])
                    geno.addAffectedLocus(alt_locus_id, gene_id)
                    model.addBlankNodeAnnotation(alt_locus_id)

                    # consider typing the gain/loss-of-function variants like:
                    # http://sequenceontology.org/browser/current_svn/term/SO:0002054
                    # http://sequenceontology.org/browser/current_svn/term/SO:0002053

                    # use "assessed" status to issue an evidence code
                    # FIXME I think that these codes are sub-optimal
                    status_code = \
                        a.find('DisorderGeneAssociationStatus').get('id')
                    # imported automatically asserted information
                    # used in automatic assertion
                    eco_id = 'ECO:0000323'
                    # Assessed
                    # TODO are these internal ids stable between releases?
                    if status_code == '17991':
                        # imported manually asserted information
                        # used in automatic assertion
                        eco_id = 'ECO:0000322'
                    # Non-traceable author statement ECO_0000034
                    # imported information in automatic assertion ECO_0000313

                    assoc = G2PAssoc(g, self.name, alt_locus_id,
                                     disorder_id, rel_id)
                    assoc.add_evidence(eco_id)
                    assoc.add_association_to_graph()

                    rlist = a.find('./Gene/ExternalReferenceList')
                    eqid = None

                    for r in rlist.findall('ExternalReference'):
                        if r.find('Source').text == 'Ensembl':
                            eqid = 'ENSEMBL:'+r.find('Reference').text
                        elif r.find('Source').text == 'HGNC':
                            eqid = 'HGNC:'+r.find('Reference').text
                        elif r.find('Source').text == 'OMIM':
                            eqid = 'OMIM:'+r.find('Reference').text
                        else:
                            pass  # skip the others for now
                        if eqid is not None:
                            model.addClassToGraph(eqid, None)
                            model.addEquivalentClass(gene_id, eqid)
                elem.clear()  # empty the element

            if self.testMode and limit is not None and line_counter > limit:
                return

        return
开发者ID:DoctorBud,项目名称:dipper,代码行数:104,代码来源:Orphanet.py

示例8: _process_diseasegene

# 需要导入模块: from dipper.models.Model import Model [as 别名]
# 或者: from dipper.models.Model.Model import addEquivalentClass [as 别名]
    def _process_diseasegene(self, limit):
        """
        :param limit:
        :return:
        """
        if self.test_mode:
            graph = self.testgraph
        else:
            graph = self.graph
        line_counter = 0

        model = Model(graph)

        myfile = '/'.join((self.rawdir, self.files['disease-gene']['file']))

        for event, elem in ET.iterparse(myfile):
            if elem.tag == 'Disorder':
                # get the element name and id, ignore element name
                # id = elem.get('id') # some internal identifier
                disorder_num = elem.find('OrphaNumber').text
                disorder_id = 'ORPHA:' + str(disorder_num)

                if self.test_mode and disorder_id not in self.all_test_ids['disease']:
                    continue
                disorder_label = elem.find('Name').text

                # assuming that these are in the ontology (...any particular one?)
                model.addClassToGraph(disorder_id, disorder_label)
                assoc_list = elem.find('DisorderGeneAssociationList')
                expected_genes = assoc_list.get('count')
                LOG.info(
                    'Expecting %s genes associated with disorder %s.',
                    expected_genes, disorder_id)
                processed_genes = 0
                for assoc in assoc_list.findall('DisorderGeneAssociation'):
                    processed_genes += 1
                    gene = assoc.find('Gene')

                    # get gene's curie  HGNC or Ensembl ...

                    lclid = gene.find('OrphaNumber').text
                    gene_curie = 'ORPHA:' + lclid
                    gene_set = {'ORPHA': lclid}
                    for gene_ref in gene.findall(
                            './ExternalReferenceList/ExternalReference'):
                        gene_set[gene_ref.find('Source').text] = \
                            gene_ref.find('Reference').text

                    # set priority (clique leader if available) but default to OPRHA
                    for pfx in ('HGNC', 'Ensembl', 'SwissProt'):
                        if pfx in gene_set:
                            if pfx in self.localtt:
                                pfx = self.localtt[pfx]
                            gene_curie = pfx + ':' + gene_set[pfx]
                            gene_set.pop(pfx)
                            model.addClassToGraph(gene_curie, None)
                            break

                    # TEC have reservations w.r.t aggerator links being gene classes
                    for prefix in gene_set:
                        lclid = gene_set[prefix]
                        if prefix in self.localtt:
                            prefix = self.localtt[prefix]

                        dbxref = prefix + ':' + lclid

                        if gene_curie != dbxref:
                            model.addClassToGraph(dbxref, None)
                            model.addEquivalentClass(gene_curie, dbxref)

                    # TEC. would prefer this not happen here. let HGNC handle it
                    # except there are some w/o explicit external links ...

                    gene_symbol = gene.find('Symbol').text

                    syn_list = gene.find('./SynonymList')
                    if int(syn_list.get('count')) > 0:
                        for syn in syn_list.findall('./Synonym'):
                            model.addSynonym(gene_curie, syn.text)

                    dg_label = assoc.find('./DisorderGeneAssociationType/Name').text

                    # use dg association status to issue an evidence code
                    # FIXME I think that these codes are sub-optimal
                    eco_id = self.resolve(
                        assoc.find('DisorderGeneAssociationStatus/Name').text)

                    rel_id = self.resolve(dg_label)
                    
                    g2p_assoc = G2PAssoc(self.graph, self.name, gene_curie, disorder_id, rel_id)
                    g2p_assoc.add_evidence(eco_id)
                    g2p_assoc.add_association_to_graph()

                elem.clear()  # empty the element
                if int(expected_genes) != processed_genes:
                    LOG.warning(
                        '% expected %s associated genes but we processed %i',
                        disorder_id, expected_genes, processed_genes)

            if self.test_mode and limit is not None and line_counter > limit:
#.........这里部分代码省略.........
开发者ID:TomConlin,项目名称:dipper,代码行数:103,代码来源:Orphanet.py

示例9: _process_genes

# 需要导入模块: from dipper.models.Model import Model [as 别名]
# 或者: from dipper.models.Model.Model import addEquivalentClass [as 别名]
    def _process_genes(self, limit=None):

        if self.test_mode:
            graph = self.testgraph
        else:
            graph = self.graph

        geno = Genotype(graph)
        model = Model(graph)

        raw = '/'.join((self.rawdir, self.files['genes']['file']))
        col = self.files['genes']['columns']
        LOG.info("Processing HGNC genes")

        chr_pattern = re.compile(r'(\d+|X|Y|Z|W|MT)[pq$]')
        band_pattern = re.compile(r'([pq][A-H\d]?\d?(?:\.\d+)?)')

        with open(raw, 'r', encoding="utf8") as csvfile:
            filereader = csv.reader(csvfile, delimiter='\t', quotechar='\"')

            row = next(filereader)
            if not self.check_fileheader(col, row):
                exit(-1)

            for row in filereader:
                # To generate:
                # head -1 hgnc_complete_set.txt.1 | tr '\t' '\n' |
                # sed "s/\(.*\)/\1 = row[col.index(\'\1\')]/g"

                hgnc_id = row[col.index('hgnc_id')].strip()
                symbol = row[col.index('symbol')].strip()
                name = row[col.index('name')].strip()
                # locus_group = row[col.index('locus_group')]
                locus_type = row[col.index('locus_type')].strip()
                # status = row[col.index('status')]
                location = row[col.index('location')].strip()
                # location_sortable = row[col.index('location_sortable')]
                # alias_symbol = row[col.index('alias_symbol')]
                # alias_name = row[col.index('alias_name')]
                # prev_symbol = row[col.index('prev_symbol')]
                # prev_name = row[col.index('prev_name')]
                # gene_family = row[col.index('gene_family')]
                # gene_family_id = row[col.index('gene_family_id')]
                # date_approved_reserved = row[col.index('date_approved_reserved')]
                # date_symbol_changed = row[col.index('date_symbol_changed')]
                # date_name_changed = row[col.index('date_name_changed')]
                # date_modified = row[col.index('date_modified')]
                entrez_id = row[col.index('entrez_id')].strip()
                ensembl_gene_id = row[col.index('ensembl_gene_id')].strip()
                # vega_id = row[col.index('vega_id')]
                # ucsc_id = row[col.index('ucsc_id')]
                # ena = row[col.index('ena')]
                # refseq_accession = row[col.index('refseq_accession')]
                # ccds_id = row[col.index('ccds_id')]
                # uniprot_ids = row[col.index('uniprot_ids')]
                pubmed_ids = row[col.index('pubmed_id')].strip()  # pipe seperated!
                # mgd_id = row[col.index('mgd_id')]
                # rgd_id = row[col.index('rgd_id')]
                # lsdb = row[col.index('lsdb')]
                # cosmic = row[col.index('cosmic')]
                omim_ids = row[col.index('omim_id')].strip()  # pipe seperated!
                # mirbase = row[col.index('mirbase')]
                # homeodb = row[col.index('homeodb')]
                # snornabase = row[col.index('snornabase')]
                # bioparadigms_slc = row[col.index('bioparadigms_slc')]
                # orphanet = row[col.index('orphanet')]
                # pseudogene.org = row[col.index('pseudogene.org')]
                # horde_id = row[col.index('horde_id')]
                # merops = row[col.index('merops')]
                # imgt = row[col.index('imgt')]
                # iuphar = row[col.index('iuphar')]
                # kznf_gene_catalog = row[col.index('kznf_gene_catalog')]
                # mamit_trnadb = row[col.index('mamit-trnadb')]
                # cd = row[col.index('cd')]
                # lncrnadb = row[col.index('lncrnadb')]
                # enzyme_id = row[col.index('enzyme_id')]
                # intermediate_filament_db = row[col.index('intermediate_filament_db')]
                # rna_central_ids = row[col.index('rna_central_ids')]
                # lncipedia = row[col.index('lncipedia')]
                # gtrnadb = row[col.index('gtrnadb')]

                if self.test_mode and entrez_id != '' and \
                        entrez_id not in self.gene_ids:
                    continue

                if name == '':
                    name = None

                if locus_type == 'withdrawn':
                    model.addDeprecatedClass(hgnc_id)
                else:
                    gene_type_id = self.resolve(locus_type, False)  # withdrawn -> None?
                    if gene_type_id != locus_type:
                        model.addClassToGraph(hgnc_id, symbol, gene_type_id, name)
                    model.makeLeader(hgnc_id)

                if entrez_id != '':
                    model.addEquivalentClass(hgnc_id, 'NCBIGene:' + entrez_id)

                if ensembl_gene_id != '':
#.........这里部分代码省略.........
开发者ID:TomConlin,项目名称:dipper,代码行数:103,代码来源:HGNC.py

示例10: _process_genes

# 需要导入模块: from dipper.models.Model import Model [as 别名]
# 或者: from dipper.models.Model.Model import addEquivalentClass [as 别名]
    def _process_genes(self, taxid, limit=None):
        if self.test_mode:
            graph = self.testgraph
        else:
            graph = self.graph

        model = Model(graph)
        geno = Genotype(graph)

        raw = '/'.join((self.rawdir, self.files[taxid]['file']))
        line_counter = 0
        LOG.info("Processing Ensembl genes for tax %s", taxid)
        with open(raw, 'r', encoding="utf8") as csvfile:
            filereader = csv.reader(csvfile, delimiter='\t')
            for row in filereader:
                if len(row) < 4:
                    LOG.warning("Too few columns in: " + row)
                    raise ValueError("Data error for file %s", raw)
                (ensembl_gene_id, external_gene_name, description, gene_biotype,
                 entrezgene, ensembl_peptide_id, uniprotswissprot) = row[0:7]

                # in the case of human genes, we also get the hgnc id,
                # and is the last col
                if taxid == '9606':
                    hgnc_id = row[7]
                else:
                    hgnc_id = None

                if self.test_mode and entrezgene != '' and \
                        int(entrezgene) not in self.gene_ids:
                    continue

                line_counter += 1
                gene_id = 'ENSEMBL:' + ensembl_gene_id
                peptide_curie = 'ENSEMBL:{}'.format(ensembl_peptide_id)
                uniprot_curie = 'UniProtKB:{}'.format(uniprotswissprot)
                entrez_curie = 'NCBIGene:{}'.format(entrezgene)

                if description == '':
                    description = None
                gene_biotype = gene_biotype.strip()
                gene_type_id = self.resolve(gene_biotype, False)
                if gene_type_id == gene_biotype.strip():   # did not resolve
                    gene_type_id = self.globaltt['polypeptide']

                model.addClassToGraph(
                    gene_id, external_gene_name, gene_type_id, description)
                model.addIndividualToGraph(peptide_curie, None, gene_type_id)
                model.addIndividualToGraph(uniprot_curie, None, gene_type_id)

                if entrezgene != '':
                    if taxid == '9606':
                        # Use HGNC for eq in human data
                        model.addXref(gene_id, entrez_curie)
                    else:
                        model.addEquivalentClass(gene_id, entrez_curie)
                if hgnc_id is not None and hgnc_id != '':
                    model.addEquivalentClass(gene_id, hgnc_id)
                geno.addTaxon('NCBITaxon:'+taxid, gene_id)
                if ensembl_peptide_id != '':
                    geno.addGeneProduct(gene_id, peptide_curie)
                    if uniprotswissprot != '':
                        geno.addGeneProduct(gene_id, uniprot_curie)
                        model.addXref(peptide_curie, uniprot_curie)

                if not self.test_mode and limit is not None and line_counter > limit:
                    break

        return
开发者ID:TomConlin,项目名称:dipper,代码行数:71,代码来源:Ensembl.py

示例11: _get_identifiers

# 需要导入模块: from dipper.models.Model import Model [as 别名]
# 或者: from dipper.models.Model.Model import addEquivalentClass [as 别名]
    def _get_identifiers(self, limit):
        """
        This will process the id mapping file provided by Biogrid.
        The file has a very large header, which we scan past,
        then pull the identifiers, and make equivalence axioms

        :param limit:
        :return:

        """

        logger.info("getting identifier mapping")
        line_counter = 0
        f = '/'.join((self.rawdir, self.files['identifiers']['file']))
        myzip = ZipFile(f, 'r')
        # assume that the first entry is the item
        fname = myzip.namelist()[0]
        foundheader = False

        # TODO align this species filter with the one above
        # speciesfilters = 'Homo sapiens,Mus musculus,Drosophila melanogaster,
        # Danio rerio, Caenorhabditis elegans,Xenopus laevis'.split(',')

        speciesfilters = 'Homo sapiens,Mus musculus'.split(',')
        with myzip.open(fname, 'r') as csvfile:
            for line in csvfile:
                # skip header lines
                if not foundheader:
                    if re.match(r'BIOGRID_ID', line.decode()):
                        foundheader = True
                    continue

                line = line.decode().strip()
                # BIOGRID_ID
                # IDENTIFIER_VALUE
                # IDENTIFIER_TYPE
                # ORGANISM_OFFICIAL_NAME
                # 1	814566	ENTREZ_GENE	Arabidopsis thaliana
                (biogrid_num, id_num, id_type,
                 organism_label) = line.split('\t')

                if self.testMode:
                    g = self.testgraph
                    # skip any genes that don't match our test set
                    if int(biogrid_num) not in self.biogrid_ids:
                        continue
                else:
                    g = self.graph

                model = Model(g)

                # for each one of these,
                # create the node and add equivalent classes
                biogrid_id = 'BIOGRID:'+biogrid_num
                prefix = self._map_idtype_to_prefix(id_type)

                # TODO make these filters available as commandline options
                # geneidtypefilters='NCBIGene,OMIM,MGI,FlyBase,ZFIN,MGI,HGNC,
                #                   WormBase,XenBase,ENSEMBL,miRBase'.split(',')
                geneidtypefilters = 'NCBIGene,MGI,ENSEMBL,ZFIN,HGNC'.split(',')
                # proteinidtypefilters='HPRD,Swiss-Prot,NCBIProtein'
                if (speciesfilters is not None) \
                        and (organism_label.strip() in speciesfilters):
                    line_counter += 1
                    if (geneidtypefilters is not None) \
                            and (prefix in geneidtypefilters):
                        mapped_id = ':'.join((prefix, id_num))
                        model.addEquivalentClass(biogrid_id, mapped_id)
                    # this symbol will only get attached to the biogrid class
                    elif id_type == 'OFFICIAL_SYMBOL':
                        model.addClassToGraph(biogrid_id, id_num)
                    # elif (id_type == 'SYNONYM'):
                    #   FIXME - i am not sure these are synonyms, altids?
                    #   gu.addSynonym(g,biogrid_id,id_num)

                if not self.testMode and limit is not None \
                        and line_counter > limit:
                    break

        myzip.close()

        return
开发者ID:kshefchek,项目名称:dipper,代码行数:84,代码来源:BioGrid.py

示例12: _process_omim2disease

# 需要导入模块: from dipper.models.Model import Model [as 别名]
# 或者: from dipper.models.Model.Model import addEquivalentClass [as 别名]
    def _process_omim2disease(self, limit=None):
        """
        This method maps the KEGG disease IDs to
        the corresponding OMIM disease IDs.
        Currently this only maps KEGG diseases and OMIM diseases that are 1:1.

        Triples created:
        <kegg_disease_id> is a class
        <omim_disease_id> is a class
        <kegg_disease_id> hasXref <omim_disease_id>
        :param limit:

        :return:

        """

        LOG.info("Processing 1:1 KEGG disease to OMIM disease mappings")
        if self.test_mode:
            graph = self.testgraph
        else:
            graph = self.graph
        model = Model(graph)
        raw = '/'.join((self.rawdir, self.files['omim2disease']['file']))
        with open(raw, 'r', encoding="iso-8859-1") as csvfile:
            reader = csv.reader(csvfile, delimiter='\t', quotechar='\"')
            for row in reader:
                (omim_disease_id, kegg_disease_id, link_type) = row

                kegg_disease_id = 'KEGG-' + kegg_disease_id.strip()
                omim_disease_id = re.sub(r'omim', 'OMIM', omim_disease_id)

                # Create hash for the links from OMIM ID -> KEGG ID
                if omim_disease_id not in self.omim_disease_hash:
                    self.omim_disease_hash[omim_disease_id] = [kegg_disease_id]
                else:
                    self.omim_disease_hash[omim_disease_id].append(kegg_disease_id)

                # Create hash for the links from KEGG ID -> OMIM ID
                if kegg_disease_id not in self.kegg_disease_hash:
                    self.kegg_disease_hash[kegg_disease_id] = [omim_disease_id]
                else:
                    self.kegg_disease_hash[kegg_disease_id].append(omim_disease_id)

        # Now process the disease hashes
        # and only pass 1:1 omim disease:KEGG disease entries.
        for omim_disease_id in self.omim_disease_hash:
            if self.test_mode and omim_disease_id not in self.test_ids['disease']:
                continue

            if (not self.test_mode) and (limit is not None and reader.line_num > limit):
                break

            if len(self.omim_disease_hash[omim_disease_id]) == 1:
                kegg_disease_id = ''.join(self.omim_disease_hash.get(omim_disease_id))
                if len(self.kegg_disease_hash[kegg_disease_id]) == 1:
                    # add ids, and deal with the labels separately
                    model.addClassToGraph(kegg_disease_id, None)
                    model.addClassToGraph(omim_disease_id, None)
                    # TODO is this safe?
                    model.addEquivalentClass(kegg_disease_id, omim_disease_id)
            else:
                pass
                # gu.addXref(g, omim_disease_id, kegg_disease_id)
                # TODO add xrefs if >1:1 mapping?

        LOG.info("Done with KEGG disease to OMIM disease mappings.")
开发者ID:TomConlin,项目名称:dipper,代码行数:68,代码来源:KEGG.py

示例13: _process_omim2gene

# 需要导入模块: from dipper.models.Model import Model [as 别名]
# 或者: from dipper.models.Model.Model import addEquivalentClass [as 别名]
    def _process_omim2gene(self, limit=None):
        """
        This method maps the OMIM IDs and KEGG gene ID.
        Currently split based on the link_type field.
        Equivalent link types are mapped as gene XRefs.
        Reverse link types are mapped as disease to gene associations.
        Original link types are currently skipped.

        Triples created:
        <kegg_gene_id> is a Gene
        <omim_gene_id> is a Gene
        <kegg_gene_id>> hasXref <omim_gene_id>

        <assoc_id> has subject <omim_disease_id>
        <assoc_id> has object <kegg_gene_id>
        :param limit:

        :return:
        """

        LOG.info("Processing OMIM to KEGG gene")
        if self.test_mode:
            graph = self.testgraph
        else:
            graph = self.graph
        model = Model(graph)
        geno = Genotype(graph)
        raw = '/'.join((self.rawdir, self.files['omim2gene']['file']))
        with open(raw, 'r', encoding="iso-8859-1") as csvfile:
            reader = csv.reader(csvfile, delimiter='\t', quotechar='\"')
            for row in reader:
                (kegg_gene_id, omim_id, link_type) = row

                if self.test_mode and kegg_gene_id not in self.test_ids['genes']:
                    continue

                kegg_gene_id = 'KEGG-' + kegg_gene_id.strip()
                omim_id = re.sub(r'omim', 'OMIM', omim_id)
                if link_type == 'equivalent':
                    # these are genes!
                    # so add them as a class then make equivalence
                    model.addClassToGraph(omim_id, None)
                    geno.addGene(kegg_gene_id, None)

                    # previous: if omim type is not disease-ish then use
                    # now is:   if omim type is gene then use

                    if omim_id in self.omim_replaced:
                        repl = self.omim_replaced[omim_id]
                        for omim in repl:
                            if omim in self.omim_type and \
                                    self.omim_type[omim] == self.globaltt['gene']:
                                omim_id = omim
                    if omim_id in self.omim_type and \
                            self.omim_type[omim_id] == self.globaltt['gene']:
                        model.addEquivalentClass(kegg_gene_id, omim_id)
                elif link_type == 'reverse':
                    # make an association between an OMIM ID & the KEGG gene ID
                    # we do this with omim ids because
                    # they are more atomic than KEGG ids

                    alt_locus_id = self._make_variant_locus_id(kegg_gene_id, omim_id)
                    alt_label = self.label_hash[alt_locus_id]
                    model.addIndividualToGraph(
                        alt_locus_id, alt_label, self.globaltt['variant_locus'])
                    geno.addAffectedLocus(alt_locus_id, kegg_gene_id)
                    model.addBlankNodeAnnotation(alt_locus_id)

                    # Add the disease to gene relationship.
                    rel = self.globaltt['is marker for']
                    assoc = G2PAssoc(graph, self.name, alt_locus_id, omim_id, rel)
                    assoc.add_association_to_graph()

                elif link_type == 'original':
                    # these are sometimes a gene, and sometimes a disease
                    LOG.info(
                        'Unable to handle original link for %s-%s',
                        kegg_gene_id, omim_id)
                else:
                    # don't know what these are
                    LOG.warning(
                        'Unhandled link type for %s-%s: %s',
                        kegg_gene_id, omim_id, link_type)

                if (not self.test_mode) and (
                        limit is not None and reader.line_num > limit):
                    break
        LOG.info("Done with OMIM to KEGG gene")
开发者ID:TomConlin,项目名称:dipper,代码行数:90,代码来源:KEGG.py

示例14: _process_genes

# 需要导入模块: from dipper.models.Model import Model [as 别名]
# 或者: from dipper.models.Model.Model import addEquivalentClass [as 别名]
    def _process_genes(self, limit=None):

        if self.testMode:
            g = self.testgraph
        else:
            g = self.graph

        geno = Genotype(g)
        model = Model(g)
        raw = '/'.join((self.rawdir, self.files['genes']['file']))
        line_counter = 0
        logger.info("Processing HGNC genes")

        with open(raw, 'r', encoding="utf8") as csvfile:
            filereader = csv.reader(csvfile, delimiter='\t', quotechar='\"')
            # curl -s ftp://ftp.ebi.ac.uk/pub/databases/genenames/new/tsv/hgnc_complete_set.txt | head -1 | tr '\t' '\n' | grep -n  .
            for row in filereader:
                (hgnc_id,
                 symbol,
                 name,
                 locus_group,
                 locus_type,
                 status,
                 location,
                 location_sortable,
                 alias_symbol,
                 alias_name,
                 prev_symbol,
                 prev_name,
                 gene_family,
                 gene_family_id,
                 date_approved_reserved,
                 date_symbol_changed,
                 date_name_changed,
                 date_modified,
                 entrez_id,
                 ensembl_gene_id,
                 vega_id,
                 ucsc_id,
                 ena,
                 refseq_accession,
                 ccds_id,
                 uniprot_ids,
                 pubmed_id,
                 mgd_id,
                 rgd_id,
                 lsdb,
                 cosmic,
                 omim_id,
                 mirbase,
                 homeodb,
                 snornabase,
                 bioparadigms_slc,
                 orphanet,
                 pseudogene_org,
                 horde_id,
                 merops,
                 imgt,
                 iuphar,
                 kznf_gene_catalog,
                 mamit_trnadb,
                 cd,
                 lncrnadb,
                 enzyme_id,
                 intermediate_filament_db,
                 rna_central_ids) = row

                line_counter += 1

                # skip header
                if line_counter <= 1:
                    continue

                if self.testMode and entrez_id != '' \
                        and int(entrez_id) not in self.gene_ids:
                    continue

                if name == '':
                    name = None
                gene_type_id = self._get_gene_type(locus_type)
                model.addClassToGraph(hgnc_id, symbol, gene_type_id, name)
                if locus_type == 'withdrawn':
                    model.addDeprecatedClass(hgnc_id)
                else:
                    model.makeLeader(hgnc_id)
                if entrez_id != '':
                    model.addEquivalentClass(
                        hgnc_id, 'NCBIGene:' + entrez_id)
                if ensembl_gene_id != '':
                    model.addEquivalentClass(
                        hgnc_id, 'ENSEMBL:' + ensembl_gene_id)
                if omim_id != '' and "|" not in omim_id:
                    omim_curie = 'OMIM:' + omim_id
                    if not DipperUtil.is_omim_disease(omim_curie):
                        model.addEquivalentClass(hgnc_id, omim_curie)

                geno.addTaxon('NCBITaxon:9606', hgnc_id)

                # add pubs as "is about"
                if pubmed_id != '':
#.........这里部分代码省略.........
开发者ID:DoctorBud,项目名称:dipper,代码行数:103,代码来源:HGNC.py

示例15: _process_genes

# 需要导入模块: from dipper.models.Model import Model [as 别名]
# 或者: from dipper.models.Model.Model import addEquivalentClass [as 别名]
    def _process_genes(self, taxid, limit=None):
        if self.testMode:
            g = self.testgraph
        else:
            g = self.graph

        model = Model(g)
        geno = Genotype(g)

        raw = '/'.join((self.rawdir, self.files[taxid]['file']))
        line_counter = 0
        logger.info("Processing Ensembl genes for tax %s", taxid)
        with open(raw, 'r', encoding="utf8") as csvfile:
            filereader = csv.reader(csvfile, delimiter='\t')
            for row in filereader:
                if len(row) < 4:
                    raise ValueError("Data error for file %s", raw)
                (ensembl_gene_id, external_gene_name,
                 description, gene_biotype, entrezgene,
                 peptide_id, uniprot_swissprot) = row[0:7]

                # in the case of human genes, we also get the hgnc id,
                # and is the last col
                if taxid == '9606':
                    hgnc_id = row[7]
                else:
                    hgnc_id = None

                if self.testMode and entrezgene != '' \
                        and int(entrezgene) not in self.gene_ids:
                    continue

                line_counter += 1
                gene_id = 'ENSEMBL:' + ensembl_gene_id
                peptide_curie = 'ENSEMBL:{}'.format(peptide_id)
                uniprot_curie = 'UniProtKB:{}'.format(uniprot_swissprot)
                entrez_curie = 'NCBIGene:{}'.format(entrezgene)

                if description == '':
                    description = None
                # gene_type_id = self._get_gene_type(gene_biotype)
                gene_type_id = None
                model.addClassToGraph(
                    gene_id, external_gene_name, gene_type_id, description)
                model.addIndividualToGraph(peptide_curie, None, self._get_gene_type("polypeptide"))
                model.addIndividualToGraph(uniprot_curie, None, self._get_gene_type("polypeptide"))

                if entrezgene != '':
                    model.addEquivalentClass(gene_id, entrez_curie)
                if hgnc_id is not None and hgnc_id != '':
                    model.addEquivalentClass(gene_id, hgnc_id)
                geno.addTaxon('NCBITaxon:'+taxid, gene_id)
                if peptide_id != '':
                    geno.addGeneProduct(gene_id, peptide_curie)
                    if uniprot_swissprot != '':
                        geno.addGeneProduct(gene_id, uniprot_curie)
                        model.addXref(peptide_curie, uniprot_curie)

                if not self.testMode \
                        and limit is not None and line_counter > limit:
                    break

        return
开发者ID:kshefchek,项目名称:dipper,代码行数:65,代码来源:Ensembl.py


注:本文中的dipper.models.Model.Model.addEquivalentClass方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。