当前位置: 首页>>代码示例>>Python>>正文


Python Genotype.addGenotype方法代码示例

本文整理汇总了Python中dipper.models.Genotype.Genotype.addGenotype方法的典型用法代码示例。如果您正苦于以下问题:Python Genotype.addGenotype方法的具体用法?Python Genotype.addGenotype怎么用?Python Genotype.addGenotype使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在dipper.models.Genotype.Genotype的用法示例。


在下文中一共展示了Genotype.addGenotype方法的8个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: GenotypeTestCase

# 需要导入模块: from dipper.models.Genotype import Genotype [as 别名]
# 或者: from dipper.models.Genotype.Genotype import addGenotype [as 别名]
class GenotypeTestCase(unittest.TestCase):

    def setUp(self):
        self.graph = Graph()
        self.curie_map = curie_map.get()
        self.genotype = Genotype(self.graph)

    def tearDown(self):
        self.genotype = None

    def test_addGenotype(self):
        from rdflib.namespace import RDFS,URIRef
        from rdflib import Literal
        from dipper.utils.CurieUtil import CurieUtil
        cu = CurieUtil(self.curie_map)
        id = 'MGI:5515892'
        label = \
            'Pmp22<Tr-2J>/Pmp22<+> [C57BL/6J-Pmp22<Tr-2J>/GrsrJ]'
        self.genotype.addGenotype(id, label)
        self.assertTrue((URIRef(cu.get_uri(id)), RDFS['label'],
                         Literal(label)) in self.genotype.graph)
开发者ID:d3borah,项目名称:dipper,代码行数:23,代码来源:test_genotype.py

示例2: _process_data

# 需要导入模块: from dipper.models.Genotype import Genotype [as 别名]
# 或者: from dipper.models.Genotype.Genotype import addGenotype [as 别名]

#.........这里部分代码省略.........
                            geno.genoparts['genomic_variation_complement'])

                        # add the gvc to the genotype
                        if genotype_id is not None:
                            if affected == 'unaffected':
                                rel = \
                                    geno.object_properties[
                                        'has_reference_part']
                            else:
                                rel = \
                                    geno.object_properties[
                                        'has_alternate_part']
                            geno.addParts(gvc_id, genotype_id, rel)
                        if karyotype_id is not None \
                                and self._is_normal_karyotype(karyotype):
                            if gvc_label is not None and gvc_label != '':
                                genotype_label = \
                                    '; '.join((gvc_label, karyotype))
                            else:
                                genotype_label = karyotype
                            if genotype_id is None:
                                genotype_id = karyotype_id
                            else:
                                geno.addParts(
                                    karyotype_id, genotype_id,
                                    geno.object_properties[
                                        'has_reference_part'])
                        else:
                            genotype_label = gvc_label
                            # use the catalog id as the background
                        genotype_label += ' ['+catalog_id.strip()+']'

                    if genotype_id is not None and gvc_id is not None:
                        # only add the genotype if it has some parts
                        geno.addGenotype(
                            genotype_id, genotype_label,
                            geno.genoparts['intrinsic_genotype'])
                        geno.addTaxon(taxon, genotype_id)
                        # add that the patient has the genotype
                        # TODO check if the genotype belongs to
                        # the cell line or to the patient
                        gu.addTriple(
                            g, patient_id,
                            geno.properties['has_genotype'], genotype_id)
                    else:
                        geno.addTaxon(taxon, patient_id)

                    # TODO: Add sex/gender  (as part of the karyotype?)

                    # #############    DEAL WITH THE DISEASES   #############

                    # we associate the disease to the patient
                    if affected == 'affected':
                        if omim_number != '':
                            for d in omim_number.split(';'):
                                if d is not None and d != '':
                                    # if the omim number is in omim_map,
                                    # then it is a gene not a pheno
                                    if d not in omim_map:
                                        disease_id = 'OMIM:'+d.strip()
                                        # assume the label is taken care of
                                        gu.addClassToGraph(g, disease_id, None)

                                        # add the association:
                                        #   the patient has the disease
                                        assoc = G2PAssoc(
                                            self.name, patient_id, disease_id)
                                        assoc.add_association_to_graph(g)

                                        # this line is a model of this disease
                                        # TODO abstract out model into
                                        # it's own association class?
                                        gu.addTriple(
                                            g, cell_line_id,
                                            gu.properties['model_of'],
                                            disease_id)
                                    else:
                                        logger.info(
                                            'removing %s from disease list ' +
                                            'since it is a gene', d)

                    # #############    ADD PUBLICATIONS   #############

                    if pubmed_ids != '':
                        for s in pubmed_ids.split(';'):
                            pubmed_id = 'PMID:'+s.strip()
                            ref = Reference(pubmed_id)
                            ref.setType(Reference.ref_types['journal_article'])
                            ref.addRefToGraph(g)
                            gu.addTriple(
                                g, pubmed_id, gu.properties['mentions'],
                                cell_line_id)

                    if not self.testMode \
                            and (limit is not None and line_counter > limit):
                        break

            Assoc(self.name).load_all_properties(g)

        return
开发者ID:JervenBolleman,项目名称:dipper,代码行数:104,代码来源:Coriell.py

示例3: _process_phenotype_data

# 需要导入模块: from dipper.models.Genotype import Genotype [as 别名]
# 或者: from dipper.models.Genotype.Genotype import addGenotype [as 别名]

#.........这里部分代码省略.........
                                       geno.genoparts['variant_locus'])
                        vl_set.add(vl_id)
                        if len(variants) == 1 and len(genes) == 1:
                            for gene in genes:
                                geno.addAlleleOfGene(vl_id, gene)
                        else:
                            geno.addAllele(vl_id, vl_symbol)
                else:  # len(vars) == 0
                    # it's just anonymous variants in some gene
                    for gene in genes:
                        vl_id = '_'+gene+'-VL'
                        vl_id = re.sub(r':', '', vl_id)
                        if self.nobnodes:
                            vl_id = ':'+vl_id
                        vl_symbol = self.id_label_hash[gene]+'<?>'
                        self.id_label_hash[vl_id] = vl_symbol
                        geno.addAllele(vl_id, vl_symbol,
                                       geno.genoparts['variant_locus'])
                        geno.addGene(gene, self.id_label_hash[gene])
                        geno.addAlleleOfGene(vl_id, gene)
                        vl_set.add(vl_id)

                # make the vslcs
                vl_list = sorted(vl_set)
                vslc_list = []
                for vl in vl_list:
                    # for unknown zygosity
                    vslc_id = '_'+re.sub(r'^_', '', vl)+'U'
                    vslc_id = re.sub(r':', '', vslc_id)
                    if self.nobnodes:
                        vslc_id = ':' + vslc_id
                    vslc_label = self.id_label_hash[vl] + '/?'
                    self.id_label_hash[vslc_id] = vslc_label
                    vslc_list.append(vslc_id)
                    geno.addPartsToVSLC(
                        vslc_id, vl, None, geno.zygosity['indeterminate'],
                        geno.object_properties['has_alternate_part'], None)
                    gu.addIndividualToGraph(
                        g, vslc_id, vslc_label,
                        geno.genoparts['variant_single_locus_complement'])
                if len(vslc_list) > 0:
                    if len(vslc_list) > 1:
                        gvc_id = '-'.join(vslc_list)
                        gvc_id = re.sub(r':', '', gvc_id)
                        if self.nobnodes:
                            gvc_id = ':'+gvc_id
                        gvc_label = \
                            '; '.join(self.id_label_hash[v] for v in vslc_list)
                        gu.addIndividualToGraph(
                            g, gvc_id, gvc_label,
                            geno.genoparts['genomic_variation_complement'])
                        for vslc_id in vslc_list:
                            geno.addVSLCtoParent(vslc_id, gvc_id)
                    else:
                        # the GVC == VSLC, so don't have to make an extra piece
                        gvc_id = vslc_list.pop()
                        gvc_label = self.id_label_hash[gvc_id]

                    genotype_label = gvc_label + ' [n.s.]'
                    bkgd_id = \
                        '_' + re.sub(r':', '', '-'.join(
                            (geno.genoparts['unspecified_genomic_background'],
                             s)))
                    genotype_id = '-'.join((gvc_id, bkgd_id))
                    if self.nobnodes:
                        bkgd_id = ':'+bkgd_id
                    geno.addTaxon(mouse_taxon, bkgd_id)
                    geno.addGenomicBackground(
                        bkgd_id, 'unspecified ('+s+')',
                        geno.genoparts['unspecified_genomic_background'],
                        "A placeholder for the " +
                        "unspecified genetic background for "+s)
                    geno.addGenomicBackgroundToGenotype(
                        bkgd_id, genotype_id,
                        geno.genoparts['unspecified_genomic_background'])
                    geno.addParts(
                        gvc_id, genotype_id,
                        geno.object_properties['has_alternate_part'])
                    geno.addGenotype(genotype_id, genotype_label)
                    gu.addTriple(
                        g, s, geno.object_properties['has_genotype'],
                        genotype_id)
                else:
                    # logger.debug(
                    #   "Strain %s is not making a proper genotype.", s)
                    pass

            gu.loadProperties(
                g, G2PAssoc.object_properties, G2PAssoc.OBJECTPROP)
            gu.loadProperties(
                g, G2PAssoc.datatype_properties, G2PAssoc.DATAPROP)
            gu.loadProperties(
                g, G2PAssoc.annotation_properties, G2PAssoc.ANNOTPROP)
            gu.loadAllProperties(g)

            logger.warning(
                "The following gene symbols did not list identifiers: %s",
                str(sorted(list(genes_with_no_ids))))

        return
开发者ID:JervenBolleman,项目名称:dipper,代码行数:104,代码来源:MMRRC.py

示例4: _parse_patient_variants

# 需要导入模块: from dipper.models.Genotype import Genotype [as 别名]
# 或者: from dipper.models.Genotype.Genotype import addGenotype [as 别名]
    def _parse_patient_variants(self, file):
        """
        :param file: file handler
        :return:
        """
        patient_var_map = self._convert_variant_file_to_dict(file)
        gene_coordinate_map = self._parse_gene_coordinates(
            self.map_files['gene_coord_map'])
        rs_map = self._parse_rs_map_file(self.map_files['dbsnp_map'])

        genotype = Genotype(self.graph)
        model = Model(self.graph)

        self._add_variant_gene_relationship(patient_var_map, gene_coordinate_map)

        for patient in patient_var_map:
            patient_curie = ':{0}'.format(patient)
            # make intrinsic genotype for each patient
            intrinsic_geno_bnode = self.make_id(
                "{0}-intrinsic-genotype".format(patient), "_")
            genotype_label = "{0} genotype".format(patient)
            genotype.addGenotype(
                intrinsic_geno_bnode, genotype_label,
                model.globaltt['intrinsic_genotype'])

            self.graph.addTriple(
                patient_curie, model.globaltt['has_genotype'], intrinsic_geno_bnode)
            for variant_id, variant in patient_var_map[patient].items():
                build = variant['build']
                chromosome = variant['chromosome']
                position = variant['position']
                reference_allele = variant['reference_allele']
                variant_allele = variant['variant_allele']
                genes_of_interest = variant['genes_of_interest']
                rs_id = variant['rs_id']

                variant_label = ''
                variant_bnode = self.make_id("{0}".format(variant_id), "_")

                # maybe should have these look like the elif statements below
                if position and reference_allele and variant_allele:
                    variant_label = self._build_variant_label(
                        build, chromosome, position, reference_allele,
                        variant_allele, genes_of_interest)
                elif not position and reference_allele and variant_allele \
                        and len(genes_of_interest) == 1:

                    variant_label = self._build_variant_label(
                        build, chromosome, position, reference_allele, variant_allele,
                        genes_of_interest)
                elif position and (not reference_allele or not variant_allele) \
                        and len(genes_of_interest) == 1:

                    variant_label = "{0}{1}({2}):g.{3}".format(
                        build, chromosome, genes_of_interest[0], position)
                elif len(genes_of_interest) == 1:
                    variant_label = 'variant of interest in {0} gene of patient' \
                        ' {1}'.format(genes_of_interest[0], patient)
                else:
                    variant_label = 'variant of interest in patient {0}'.format(patient)

                genotype.addSequenceAlteration(variant_bnode, None)
                # check if it we have built the label
                # in _add_variant_gene_relationship()
                labels = self.graph.objects(
                    BNode(re.sub(r'^_:', '', variant_bnode, 1)), RDFS['label'])

                label_list = list(labels)

                if len(label_list) == 0:
                    model.addLabel(variant_bnode, variant_label)

                self.graph.addTriple(
                    variant_bnode, self.globaltt['in taxon'],
                    self.globaltt['Homo sapiens'])
                self.graph.addTriple(
                    intrinsic_geno_bnode, self.globaltt['has_variant_part'],
                    variant_bnode)
                if rs_id:
                    dbsnp_curie = 'dbSNP:{0}'.format(rs_id)
                    model.addSameIndividual(variant_bnode, dbsnp_curie)

        self._add_variant_sameas_relationships(patient_var_map, rs_map)
        return
开发者ID:TomConlin,项目名称:dipper,代码行数:86,代码来源:UDP.py

示例5: _add_g2p_assoc

# 需要导入模块: from dipper.models.Genotype import Genotype [as 别名]
# 或者: from dipper.models.Genotype.Genotype import addGenotype [as 别名]
    def _add_g2p_assoc(self, g, strain_id, sex, assay_id, phenotypes, comment):
        """
        Create an association between a sex-specific strain id
        and each of the phenotypes.
        Here, we create a genotype from the strain,
        and a sex-specific genotype.
        Each of those genotypes are created as anonymous nodes.

        The evidence code is hardcoded to be:
            ECO:experimental_phenotypic_evidence.

        :param g:
        :param strain_id:
        :param sex:
        :param assay_id:
        :param phenotypes: a list of phenotypes to association with the strain
        :param comment:
        :return:

        """
        geno = Genotype(g)
        model = Model(g)
        eco_id = "ECO:0000059"  # experimental_phenotypic_evidence
        strain_label = self.idlabel_hash.get(strain_id)
        # strain genotype
        genotype_id = '_'+'-'.join((re.sub(r':', '', strain_id), 'genotype'))
        genotype_label = '[' + strain_label + ']'

        sex_specific_genotype_id = '_'+'-'.join((re.sub(r':', '', strain_id),
                                                 sex, 'genotype'))
        if strain_label is not None:
            sex_specific_genotype_label = strain_label + ' (' + sex + ')'
        else:
            sex_specific_genotype_label = strain_id + '(' + sex + ')'

        genotype_type = Genotype.genoparts['sex_qualified_genotype']
        if sex == 'm':
            genotype_type = Genotype.genoparts['male_genotype']
        elif sex == 'f':
            genotype_type = Genotype.genoparts['female_genotype']

        # add the genotype to strain connection
        geno.addGenotype(
            genotype_id, genotype_label,
            Genotype.genoparts['genomic_background'])
        g.addTriple(
            strain_id, Genotype.object_properties['has_genotype'], genotype_id)

        geno.addGenotype(
            sex_specific_genotype_id, sex_specific_genotype_label,
            genotype_type)

        # add the strain as the background for the genotype
        g.addTriple(
            sex_specific_genotype_id,
            Genotype.object_properties['has_sex_agnostic_genotype_part'],
            genotype_id)

        # #############    BUILD THE G2P ASSOC    #############
        # TODO add more provenance info when that model is completed

        if phenotypes is not None:
            for phenotype_id in phenotypes:
                assoc = G2PAssoc(
                    g, self.name, sex_specific_genotype_id, phenotype_id)
                assoc.add_evidence(assay_id)
                assoc.add_evidence(eco_id)
                assoc.add_association_to_graph()
                assoc_id = assoc.get_association_id()
                model.addComment(assoc_id, comment)

        return
开发者ID:DoctorBud,项目名称:dipper,代码行数:74,代码来源:MPD.py

示例6: MPD

# 需要导入模块: from dipper.models.Genotype import Genotype [as 别名]
# 或者: from dipper.models.Genotype.Genotype import addGenotype [as 别名]

#.........这里部分代码省略.........
        :param strain_id:
        :param sex:
        :param assay_id:
        :param phenotypes: a list of phenotypes to association with the strain
        :param comment:
        :return:

        """

        eco_id = "ECO:0000059"  # experimental_phenotypic_evidence
        strain_label = self.idlabel_hash.get(strain_id)
        # strain genotype
        genotype_id = '_'+'-'.join((re.sub(r':', '', strain_id), 'genotype'))
        genotype_label = '['+strain_label+']'

        sex_specific_genotype_id = '_'+'-'.join((re.sub(r':', '', strain_id),
                                                 sex, 'genotype'))
        if strain_label is not None:
            sex_specific_genotype_label = strain_label + ' (' + sex + ')'
        else:
            sex_specific_genotype_label = strain_id + '(' + sex + ')'

        if self.nobnodes:
            genotype_id = ':'+genotype_id
            sex_specific_genotype_id = ':'+sex_specific_genotype_id

        genotype_type = Genotype.genoparts['sex_qualified_genotype']
        if sex == 'm':
            genotype_type = Genotype.genoparts['male_genotype']
        elif sex == 'f':
            genotype_type = Genotype.genoparts['female_genotype']

        # add the genotype to strain connection
        self.geno.addGenotype(
            genotype_id, genotype_label,
            Genotype.genoparts['genomic_background'])
        self.gu.addTriple(
            g, strain_id,
            Genotype.object_properties['has_genotype'], genotype_id)

        self.geno.addGenotype(
            sex_specific_genotype_id, sex_specific_genotype_label,
            genotype_type)

        # add the strain as the background for the genotype
        self.gu.addTriple(
            g, sex_specific_genotype_id,
            Genotype.object_properties['has_sex_agnostic_genotype_part'],
            genotype_id)

        # #############    BUILD THE G2P ASSOC    #############
        # TODO add more provenance info when that model is completed

        if phenotypes is not None:
            for phenotype_id in phenotypes:
                assoc = G2PAssoc(
                    self.name, sex_specific_genotype_id, phenotype_id)
                assoc.add_evidence(assay_id)
                assoc.add_evidence(eco_id)
                assoc.add_association_to_graph(g)
                assoc_id = assoc.get_association_id()
                self.gu.addComment(g, assoc_id, comment)

        return

    def getTestSuite(self):
开发者ID:JervenBolleman,项目名称:dipper,代码行数:70,代码来源:MPD.py

示例7: _process_data

# 需要导入模块: from dipper.models.Genotype import Genotype [as 别名]
# 或者: from dipper.models.Genotype.Genotype import addGenotype [as 别名]

#.........这里部分代码省略.........
                # The Colony ID refers to the ES cell clone
                #   used to generate a mouse strain.
                # Terry sez: we use this clone ID to track
                #   ES cell -> mouse strain -> mouse phenotyping.
                # The same ES clone maybe used at multiple centers,
                # so we have to concatenate the two to have a unique ID.
                # some useful reading about generating mice from ES cells:
                # http://ki.mit.edu/sbc/escell/services/details

                # here, we'll make a genotype
                # that derives from an ES cell with a given allele.
                # the strain is not really attached to the colony.

                # the colony/clone is reflective of the allele,
                # with unknown zygosity
                stem_cell_class = 'ERO:0002002'
                gu.addIndividualToGraph(g, colony_id, colony, stem_cell_class)

                # vslc of the colony has unknown zygosity
                # note that we will define the allele
                # (and it's relationship to the marker, etc.) later
                # FIXME is it really necessary to create this vslc
                # when we always know it's unknown zygosity?
                vslc_colony = \
                    '_'+allele_accession_id+geno.zygosity['indeterminate']
                vslc_colony = re.sub(r':', '', vslc_colony)
                if self.nobnodes:
                    vslc_colony = ':'+vslc_colony
                vslc_colony_label = allele_symbol+'/<?>'
                # for ease of reading, we make the colony genotype variables.
                # in the future, it might be desired to keep the vslcs
                colony_genotype_id = vslc_colony
                colony_genotype_label = vslc_colony_label
                geno.addGenotype(colony_genotype_id, colony_genotype_label)
                geno.addParts(allele_accession_id, colony_genotype_id,
                              geno.object_properties['has_alternate_part'])
                geno.addPartsToVSLC(
                    vslc_colony, allele_accession_id, None,
                    geno.zygosity['indeterminate'],
                    geno.object_properties['has_alternate_part'])
                gu.addTriple(
                    g, colony_id,
                    geno.object_properties['has_genotype'],
                    colony_genotype_id)

                # ##########    BUILD THE ANNOTATED GENOTYPE    ##########
                # now, we'll build the genotype of the individual that derives
                # from the colony/clone genotype that is attached to
                # phenotype = colony_id + strain + zygosity + sex
                # (and is derived from a colony)

                # this is a sex-agnostic genotype
                genotype_id = \
                    self.make_id(
                        (colony_id + phenotyping_center + zygosity +
                         strain_accession_id))
                geno.addSequenceDerivesFrom(genotype_id, colony_id)

                # build the VSLC of the sex-agnostic genotype
                # based on the zygosity
                allele1_id = allele_accession_id
                allele2_id = allele2_rel = None
                allele1_label = allele_symbol
                allele2_label = '<?>'
                # Making VSLC labels from the various parts,
                # can change later if desired.
开发者ID:JervenBolleman,项目名称:dipper,代码行数:70,代码来源:IMPC.py

示例8: _process_phenotype_data

# 需要导入模块: from dipper.models.Genotype import Genotype [as 别名]
# 或者: from dipper.models.Genotype.Genotype import addGenotype [as 别名]

#.........这里部分代码省略.........
                        limit is not None and reader.line_num > limit):
                    break

            # now that we've collected all of the variant information, build it
            # we don't know their zygosities
            for s in self.strain_hash:
                h = self.strain_hash.get(s)
                variants = h['variants']
                genes = h['genes']
                vl_set = set()
                # make variant loci for each gene
                if len(variants) > 0:
                    for var in variants:
                        vl_id = var.strip()
                        vl_symbol = self.id_label_hash[vl_id]
                        geno.addAllele(
                            vl_id, vl_symbol, self.globaltt['variant_locus'])
                        vl_set.add(vl_id)
                        if len(variants) == 1 and len(genes) == 1:
                            for gene in genes:
                                geno.addAlleleOfGene(vl_id, gene)
                        else:
                            geno.addAllele(vl_id, vl_symbol)
                else:  # len(vars) == 0
                    # it's just anonymous variants in some gene
                    for gene in genes:
                        vl_id = '_:' + re.sub(r':', '', gene) + '-VL'
                        vl_symbol = self.id_label_hash[gene]+'<?>'
                        self.id_label_hash[vl_id] = vl_symbol
                        geno.addAllele(
                            vl_id, vl_symbol, self.globaltt['variant_locus'])
                        geno.addGene(gene, self.id_label_hash[gene])
                        geno.addAlleleOfGene(vl_id, gene)
                        vl_set.add(vl_id)

                # make the vslcs
                vl_list = sorted(vl_set)
                vslc_list = []
                for vl in vl_list:
                    # for unknown zygosity
                    vslc_id = re.sub(r'^_', '', vl)+'U'
                    vslc_id = re.sub(r':', '', vslc_id)
                    vslc_id = '_:' + vslc_id
                    vslc_label = self.id_label_hash[vl] + '/?'
                    self.id_label_hash[vslc_id] = vslc_label
                    vslc_list.append(vslc_id)
                    geno.addPartsToVSLC(
                        vslc_id, vl, None, self.globaltt['indeterminate'],
                        self.globaltt['has_variant_part'], None)
                    model.addIndividualToGraph(
                        vslc_id, vslc_label,
                        self.globaltt['variant single locus complement'])
                if len(vslc_list) > 0:
                    if len(vslc_list) > 1:
                        gvc_id = '-'.join(vslc_list)
                        gvc_id = re.sub(r'_|:', '', gvc_id)
                        gvc_id = '_:'+gvc_id
                        gvc_label = '; '.join(self.id_label_hash[v] for v in vslc_list)
                        model.addIndividualToGraph(
                            gvc_id, gvc_label,
                            self.globaltt['genomic_variation_complement'])
                        for vslc_id in vslc_list:
                            geno.addVSLCtoParent(vslc_id, gvc_id)
                    else:
                        # the GVC == VSLC, so don't have to make an extra piece
                        gvc_id = vslc_list.pop()
                        gvc_label = self.id_label_hash[gvc_id]

                    genotype_label = gvc_label + ' [n.s.]'
                    bkgd_id = re.sub(
                        r':', '', '-'.join((
                            self.globaltt['unspecified_genomic_background'], s)))
                    genotype_id = '-'.join((gvc_id, bkgd_id))
                    bkgd_id = '_:' + bkgd_id
                    geno.addTaxon(mouse_taxon, bkgd_id)
                    geno.addGenomicBackground(
                        bkgd_id, 'unspecified (' + s + ')',
                        self.globaltt['unspecified_genomic_background'],
                        "A placeholder for the unspecified genetic background for " + s)
                    geno.addGenomicBackgroundToGenotype(
                        bkgd_id, genotype_id,
                        self.globaltt['unspecified_genomic_background'])
                    geno.addParts(
                        gvc_id, genotype_id, self.globaltt['has_variant_part'])
                    geno.addGenotype(genotype_id, genotype_label)
                    graph.addTriple(
                        s, self.globaltt['has_genotype'], genotype_id)
                else:
                    # LOG.debug(
                    #   "Strain %s is not making a proper genotype.", s)
                    pass

            LOG.warning(
                "The following gene symbols did not list identifiers: %s",
                str(sorted(list(genes_with_no_ids))))
            LOG.error(
                '%i symbols given are missing their gene identifiers',
                len(genes_with_no_ids))

        return
开发者ID:TomConlin,项目名称:dipper,代码行数:104,代码来源:MMRRC.py


注:本文中的dipper.models.Genotype.Genotype.addGenotype方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。