本文整理汇总了Python中deepchem.models.TensorGraph.set_loss方法的典型用法代码示例。如果您正苦于以下问题:Python TensorGraph.set_loss方法的具体用法?Python TensorGraph.set_loss怎么用?Python TensorGraph.set_loss使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类deepchem.models.TensorGraph
的用法示例。
在下文中一共展示了TensorGraph.set_loss方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: _build_graph
# 需要导入模块: from deepchem.models import TensorGraph [as 别名]
# 或者: from deepchem.models.TensorGraph import set_loss [as 别名]
def _build_graph(self, tf_graph, scope, model_dir):
"""Construct a TensorGraph containing the policy and loss calculations."""
state_shape = self._env.state_shape
state_dtype = self._env.state_dtype
if not self._state_is_list:
state_shape = [state_shape]
state_dtype = [state_dtype]
features = []
for s, d in zip(state_shape, state_dtype):
features.append(Feature(shape=[None] + list(s), dtype=tf.as_dtype(d)))
policy_layers = self._policy.create_layers(features)
action_prob = policy_layers['action_prob']
value = policy_layers['value']
search_prob = Label(shape=(None, self._env.n_actions))
search_value = Label(shape=(None,))
loss = MCTSLoss(
self.value_weight,
in_layers=[action_prob, value, search_prob, search_value])
graph = TensorGraph(
batch_size=self.max_search_depth,
use_queue=False,
graph=tf_graph,
model_dir=model_dir)
for f in features:
graph._add_layer(f)
graph.add_output(action_prob)
graph.add_output(value)
graph.set_loss(loss)
graph.set_optimizer(self._optimizer)
with graph._get_tf("Graph").as_default():
with tf.variable_scope(scope):
graph.build()
if len(graph.rnn_initial_states) > 0:
raise ValueError('MCTS does not support policies with recurrent layers')
return graph, features, action_prob, value, search_prob, search_value
示例2: test_Conv1D_pickle
# 需要导入模块: from deepchem.models import TensorGraph [as 别名]
# 或者: from deepchem.models.TensorGraph import set_loss [as 别名]
def test_Conv1D_pickle():
tg = TensorGraph()
feature = Feature(shape=(tg.batch_size, 1, 1))
conv = Conv1D(2, 1, in_layers=feature)
tg.add_output(conv)
tg.set_loss(conv)
tg.build()
tg.save()
示例3: test_Reshape_pickle
# 需要导入模块: from deepchem.models import TensorGraph [as 别名]
# 或者: from deepchem.models.TensorGraph import set_loss [as 别名]
def test_Reshape_pickle():
tg = TensorGraph()
feature = Feature(shape=(tg.batch_size, 1))
layer = Reshape(shape=(None, 2), in_layers=feature)
tg.add_output(layer)
tg.set_loss(layer)
tg.build()
tg.save()
示例4: test_Exp_pickle
# 需要导入模块: from deepchem.models import TensorGraph [as 别名]
# 或者: from deepchem.models.TensorGraph import set_loss [as 别名]
def test_Exp_pickle():
tg = TensorGraph()
feature = Feature(shape=(tg.batch_size, 1))
layer = Exp(feature)
tg.add_output(layer)
tg.set_loss(layer)
tg.build()
tg.save()
示例5: test_Dense_pickle
# 需要导入模块: from deepchem.models import TensorGraph [as 别名]
# 或者: from deepchem.models.TensorGraph import set_loss [as 别名]
def test_Dense_pickle():
tg = TensorGraph()
feature = Feature(shape=(tg.batch_size, 1))
dense = Dense(out_channels=1, in_layers=feature)
tg.add_output(dense)
tg.set_loss(dense)
tg.build()
tg.save()
示例6: test_StopGradient_pickle
# 需要导入模块: from deepchem.models import TensorGraph [as 别名]
# 或者: from deepchem.models.TensorGraph import set_loss [as 别名]
def test_StopGradient_pickle():
tg = TensorGraph()
feature = Feature(shape=(tg.batch_size, 1))
output = StopGradient(feature)
tg.add_output(output)
tg.set_loss(output)
tg.build()
tg.save()
示例7: test_DTNNEmbedding_pickle
# 需要导入模块: from deepchem.models import TensorGraph [as 别名]
# 或者: from deepchem.models.TensorGraph import set_loss [as 别名]
def test_DTNNEmbedding_pickle():
tg = TensorGraph()
atom_numbers = Feature(shape=(None, 23), dtype=tf.int32)
Embedding = DTNNEmbedding(in_layers=[atom_numbers])
tg.add_output(Embedding)
tg.set_loss(Embedding)
tg.build()
tg.save()
示例8: test_Gather_pickle
# 需要导入模块: from deepchem.models import TensorGraph [as 别名]
# 或者: from deepchem.models.TensorGraph import set_loss [as 别名]
def test_Gather_pickle():
tg = TensorGraph()
feature = Feature(shape=(tg.batch_size, 1))
layer = Gather(indices=[[0], [2], [3]], in_layers=feature)
tg.add_output(layer)
tg.set_loss(layer)
tg.build()
tg.save()
示例9: test_BatchNorm_pickle
# 需要导入模块: from deepchem.models import TensorGraph [as 别名]
# 或者: from deepchem.models.TensorGraph import set_loss [as 别名]
def test_BatchNorm_pickle():
tg = TensorGraph()
feature = Feature(shape=(tg.batch_size, 10))
layer = BatchNorm(in_layers=feature)
tg.add_output(layer)
tg.set_loss(layer)
tg.build()
tg.save()
示例10: test_WeightedError_pickle
# 需要导入模块: from deepchem.models import TensorGraph [as 别名]
# 或者: from deepchem.models.TensorGraph import set_loss [as 别名]
def test_WeightedError_pickle():
tg = TensorGraph()
feature = Feature(shape=(tg.batch_size, 10))
layer = WeightedError(in_layers=[feature, feature])
tg.add_output(layer)
tg.set_loss(layer)
tg.build()
tg.save()
示例11: test_Conv3DTranspose_pickle
# 需要导入模块: from deepchem.models import TensorGraph [as 别名]
# 或者: from deepchem.models.TensorGraph import set_loss [as 别名]
def test_Conv3DTranspose_pickle():
tg = TensorGraph()
feature = Feature(shape=(tg.batch_size, 10, 10, 10, 1))
layer = Conv3DTranspose(num_outputs=3, in_layers=feature)
tg.add_output(layer)
tg.set_loss(layer)
tg.build()
tg.save()
示例12: test_ReduceSquareDifference_pickle
# 需要导入模块: from deepchem.models import TensorGraph [as 别名]
# 或者: from deepchem.models.TensorGraph import set_loss [as 别名]
def test_ReduceSquareDifference_pickle():
tg = TensorGraph()
feature = Feature(shape=(tg.batch_size, 1))
layer = ReduceSquareDifference(in_layers=[feature, feature])
tg.add_output(layer)
tg.set_loss(layer)
tg.build()
tg.save()
示例13: test_ToFloat_pickle
# 需要导入模块: from deepchem.models import TensorGraph [as 别名]
# 或者: from deepchem.models.TensorGraph import set_loss [as 别名]
def test_ToFloat_pickle():
tg = TensorGraph()
feature = Feature(shape=(tg.batch_size, 1))
layer = ToFloat(in_layers=[feature])
tg.add_output(layer)
tg.set_loss(layer)
tg.build()
tg.save()
示例14: test_LSTM_pickle
# 需要导入模块: from deepchem.models import TensorGraph [as 别名]
# 或者: from deepchem.models.TensorGraph import set_loss [as 别名]
def test_LSTM_pickle():
tg = TensorGraph()
feature = Feature(shape=(tg.batch_size, 10, 10))
layer = LSTM(n_hidden=10, batch_size=tg.batch_size, in_layers=feature)
tg.add_output(layer)
tg.set_loss(layer)
tg.build()
tg.save()
示例15: test_CombineMeanStd_pickle
# 需要导入模块: from deepchem.models import TensorGraph [as 别名]
# 或者: from deepchem.models.TensorGraph import set_loss [as 别名]
def test_CombineMeanStd_pickle():
tg = TensorGraph()
feature = Feature(shape=(tg.batch_size, 1))
layer = CombineMeanStd(in_layers=[feature, feature])
tg.add_output(layer)
tg.set_loss(layer)
tg.build()
tg.save()