本文整理汇总了Python中data_store.Relax_data_store.tmpdir方法的典型用法代码示例。如果您正苦于以下问题:Python Relax_data_store.tmpdir方法的具体用法?Python Relax_data_store.tmpdir怎么用?Python Relax_data_store.tmpdir使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类data_store.Relax_data_store
的用法示例。
在下文中一共展示了Relax_data_store.tmpdir方法的4个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: hasattr
# 需要导入模块: from data_store import Relax_data_store [as 别名]
# 或者: from data_store.Relax_data_store import tmpdir [as 别名]
if not hasattr(ds, 'models'):
ds.models = ['R2eff', 'TP02']
# The grid search size (the number of increments per dimension).
GRID_INC = 4
# The number of Monte Carlo simulations to be used for error analysis at the end of the analysis.
MC_NUM = 1
# Set up the data pipe.
#######################
# The results directory.
if not hasattr(ds, 'tmpdir'):
ds.tmpdir = None
# Create the data pipe.
pipe_name = 'base pipe'
pipe_bundle = 'relax_disp'
pipe.create(pipe_name=pipe_name, bundle=pipe_bundle, pipe_type='relax_disp')
# The path to the data files (use the M61 model data for now).
data_path = status.install_path + sep+'test_suite'+sep+'shared_data'+sep+'dispersion'+sep+'r1rho_off_res_tp02'
# Create the sequence data.
spin.create(res_name='Trp', res_num=1, spin_name='N')
spin.create(res_name='Trp', res_num=2, spin_name='N')
# Set the isotope information.
spin.isotope(isotope='15N')
示例2: Relax_data_store
# 需要导入模块: from data_store import Relax_data_store [as 别名]
# 或者: from data_store.Relax_data_store import tmpdir [as 别名]
# Script for model-free analysis using the program 'Modelfree4'.
# Python module imports.
from os import sep
# relax module imports.
from data_store import Relax_data_store; ds = Relax_data_store()
from status import Status; status = Status()
# Missing temp directory (allow this script to run outside of the system test framework).
if not hasattr(ds, 'tmpdir'):
ds.tmpdir = 'temp_script'
# Path of the relaxation data.
DATA_PATH = status.install_path + sep+'test_suite'+sep+'shared_data'+sep+'model_free'+sep+'OMP'
def exec_stage_1(pipes):
"""Stage 1 function.
Initial model-free minimisation.
"""
# Loop over the data pipes.
for name in pipes:
# Create the data pipe.
print("\n\n# " + name + " #")
pipe.create(name, 'mf')
# Copy the sequence.
示例3: hasattr
# 需要导入模块: from data_store import Relax_data_store [as 别名]
# 或者: from data_store.Relax_data_store import tmpdir [as 别名]
# Analysis variables.
#####################
# The dispersion models.
if not hasattr(ds, 'models'):
ds.models = ['R2eff', 'No Rex', 'NS MMQ 2-site']
# The grid search size (the number of increments per dimension).
GRID_INC = 4
# The number of Monte Carlo simulations to be used for error analysis at the end of the analysis.
MC_NUM = 3
# The temporary directory, if needed.
if not hasattr(ds, 'tmpdir'):
ds.tmpdir = 'temp'
# Set up the data pipe.
#######################
# Create the data pipe.
pipe_name = 'base pipe'
pipe_bundle = 'relax_disp'
pipe.create(pipe_name=pipe_name, bundle=pipe_bundle, pipe_type='relax_disp')
# The path to the data files.
data_path = status.install_path + sep+'test_suite'+sep+'shared_data'+sep+'dispersion'+sep+'Sprangers_ClpP'
# Create the sequence.
spin.create(res_num=135, spin_name='S')
示例4: convergence
# 需要导入模块: from data_store import Relax_data_store [as 别名]
# 或者: from data_store.Relax_data_store import tmpdir [as 别名]
MIN_ALGOR = 'newton'
# The number of Monte Carlo simulations to be used for error analysis at the end of the analysis.
MC_NUM = 3
# Automatic looping over all rounds until convergence (must be a boolean value of True or False).
CONV_LOOP = True
# Load the state.
data_path = status.install_path + sep + 'test_suite' + sep + 'shared_data' + sep + 'model_free' + sep + 'bug_20613_auto_mf_diff_tensor_pdb'
state.load('state', dir=data_path)
# The results dir.
ds.tmpdir = mkdtemp()
# The pipe and bundle names from the state file.
pipe_bundle = 'mf (Fri Mar 8 07:43:00 2013)'
name = 'origin - mf (Fri Mar 8 07:43:00 2013)'
# Execution.
############
dAuvergne_protocol.opt_func_tol = 1e-5
dAuvergne_protocol.opt_max_iterations = 2000
# Do not change!
dAuvergne_protocol(pipe_name=name, pipe_bundle=pipe_bundle, results_dir=data_path, write_results_dir=ds.tmpdir, diff_model=DIFF_MODEL, mf_models=MF_MODELS, local_tm_models=LOCAL_TM_MODELS, grid_inc=GRID_INC, min_algor=MIN_ALGOR, mc_sim_num=MC_NUM, max_iter=2, conv_loop=CONV_LOOP)