本文整理汇总了Python中dao.user.User.fromUUID方法的典型用法代码示例。如果您正苦于以下问题:Python User.fromUUID方法的具体用法?Python User.fromUUID怎么用?Python User.fromUUID使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类dao.user.User
的用法示例。
在下文中一共展示了User.fromUUID方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: runBackgroundTasksForDay
# 需要导入模块: from dao.user import User [as 别名]
# 或者: from dao.user.User import fromUUID [as 别名]
def runBackgroundTasksForDay(user_uuid, today):
today_dt = datetime.combine(today, time.max)
user = User.fromUUID(user_uuid)
# carbon compare results is a tuple. Tuples are converted to arrays
# by mongodb
# In [44]: testUser.setScores(('a','b', 'c', 'd'), ('s', 't', 'u', 'v'))
# In [45]: testUser.getScore()
# Out[45]: ([u'a', u'b', u'c', u'd'], [u's', u't', u'u', u'v'])
weekago = today_dt - timedelta(days=7)
carbonCompareResults = carbon.getFootprintCompareForRange(user_uuid, weekago, today_dt)
setCarbonFootprint(user, carbonCompareResults)
(myModeShareCount, avgModeShareCount,
myModeShareDistance, avgModeShareDistance,
myModeCarbonFootprint, avgModeCarbonFootprint,
myModeCarbonFootprintNoLongMotorized, avgModeCarbonFootprintNoLongMotorized, # ignored
myOptimalCarbonFootprint, avgOptimalCarbonFootprint,
myOptimalCarbonFootprintNoLongMotorized, avgOptimalCarbonFootprintNoLongMotorized) = carbonCompareResults
# We only compute server stats in the background, because including them in
# the set call means that they may be invoked when the user makes a call and
# the cached value is None, which would potentially slow down user response time
msNow = systime.time()
stats.storeResultEntry(user_uuid, stats.STAT_MY_CARBON_FOOTPRINT, msNow, getCategorySum(myModeCarbonFootprint))
stats.storeResultEntry(user_uuid, stats.STAT_MY_CARBON_FOOTPRINT_NO_AIR, msNow, getCategorySum(myModeCarbonFootprintNoLongMotorized))
stats.storeResultEntry(user_uuid, stats.STAT_MY_OPTIMAL_FOOTPRINT, msNow, getCategorySum(myOptimalCarbonFootprint))
stats.storeResultEntry(user_uuid, stats.STAT_MY_OPTIMAL_FOOTPRINT_NO_AIR, msNow, getCategorySum(myOptimalCarbonFootprintNoLongMotorized))
stats.storeResultEntry(user_uuid, stats.STAT_MY_ALLDRIVE_FOOTPRINT, msNow, getCategorySum(myModeShareDistance) * (278.0/(1609 * 1000)))
stats.storeResultEntry(user_uuid, stats.STAT_MEAN_FOOTPRINT, msNow, getCategorySum(avgModeCarbonFootprint))
stats.storeResultEntry(user_uuid, stats.STAT_MEAN_FOOTPRINT_NO_AIR, msNow, getCategorySum(avgModeCarbonFootprintNoLongMotorized))
示例2: getResult
# 需要导入模块: from dao.user import User [as 别名]
# 或者: from dao.user.User import fromUUID [as 别名]
def getResult(user_uuid):
# This is in here, as opposed to the top level as recommended by the PEP
# because then we don't have to worry about loading bottle in the unit tests
from bottle import template
user = User.fromUUID(user_uuid)
currFootprint = getCarbonFootprint(user)
if currFootprint is None:
currFootprint = carbon.getFootprintCompare(user_uuid)
setCarbonFootprint(user, currFootprint)
(myModeShareCount, avgModeShareCount,
myModeShareDistance, avgModeShareDistance,
myModeCarbonFootprint, avgModeCarbonFootprint,
myModeCarbonFootprintNoLongMotorized, avgModeCarbonFootprintNoLongMotorized, # ignored
myOptimalCarbonFootprint, avgOptimalCarbonFootprint,
myOptimalCarbonFootprintNoLongMotorized, avgOptimalCarbonFootprintNoLongMotorized) = currFootprint
renderedTemplate = template("clients/data/result_template.html",
myModeShareCount = json.dumps(myModeShareCount),
avgModeShareCount = json.dumps(avgModeShareCount),
myModeShareDistance = json.dumps(myModeShareDistance),
avgModeShareDistance = json.dumps(avgModeShareDistance),
myModeCarbonFootprint = json.dumps(myModeCarbonFootprint),
avgModeCarbonFootprint = json.dumps(avgModeCarbonFootprint),
myOptimalCarbonFootprint = json.dumps(myOptimalCarbonFootprint),
avgOptimalCarbonFootprint = json.dumps(avgOptimalCarbonFootprint))
# logging.debug(renderedTemplate)
return renderedTemplate
示例3: getScoreComponents
# 需要导入模块: from dao.user import User [as 别名]
# 或者: from dao.user.User import fromUUID [as 别名]
def getScoreComponents(user_uuid, start, end):
# The score is based on the following components:
# - Percentage of trips classified. We are not auto-classifying high
# confidence trips, so don't need to handle those here
user = User.fromUUID(user_uuid)
pctClassified = common.getClassifiedRatio(user_uuid, start, end)
(myModeShareCount, avgModeShareCount,
myModeShareDistance, avgModeShareDistance,
myModeCarbonFootprint, avgModeCarbonFootprint,
myModeCarbonFootprintNoLongMotorized, avgModeCarbonFootprintNoLongMotorized,
myOptimalCarbonFootprint, avgOptimalCarbonFootprint,
myOptimalCarbonFootprintNoLongMotorized, avgOptimalCarbonFootprintNoLongMotorized) = carbon.getFootprintCompareForRange(user.uuid, start, end)
carbon.delLongMotorizedModes(myModeShareDistance)
myAllDrive = carbon.getAllDrive(user.uuid, myModeShareDistance)
myCarbonFootprintSum = sum(myModeCarbonFootprintNoLongMotorized.values())
myOptimalFootprintSum = sum(myOptimalCarbonFootprintNoLongMotorized.values())
logging.debug("myCarbonFootprintSum = %s, myOptimalFootprintSum = %s, myAllDrive = %s" %
(myCarbonFootprintSum, myOptimalFootprintSum, myAllDrive))
handleZero = lambda x, y: 0 if y == 0 else float(x)/y
components = [pctClassified,
handleZero(myCarbonFootprintSum - myOptimalFootprintSum, myOptimalFootprintSum),
handleZero(myAllDrive - myCarbonFootprintSum, myAllDrive),
handleZero(sb375DailyGoal - myCarbonFootprintSum, sb375DailyGoal)]
return components
示例4: getCurrView
# 需要导入模块: from dao.user import User [as 别名]
# 或者: from dao.user.User import fromUUID [as 别名]
def getCurrView(uuid):
user = User.fromUUID(uuid)
profile = user.getProfile()
if profile is None:
logging.debug("profile is None, returning data")
return "data"
logging.debug("profile.get('curr_view', 'dummy') is %s" % profile.get("curr_view", "data"))
return profile.get("curr_view", "data")
示例5: testCarbonFootprintStore
# 需要导入模块: from dao.user import User [as 别名]
# 或者: from dao.user.User import fromUUID [as 别名]
def testCarbonFootprintStore(self):
user = User.fromUUID(self.uuid)
# Tuple of JSON objects, similar to the real footprint
dummyCarbonFootprint = ({'myModeShareCount': 10}, {'avgModeShareCount': 20})
self.assertEquals(data.getCarbonFootprint(user), None)
data.setCarbonFootprint(user, dummyCarbonFootprint)
# recall that pymongo converts tuples to lists somewhere down the line
self.assertEquals(data.getCarbonFootprint(user), list(dummyCarbonFootprint))
示例6: getResult
# 需要导入模块: from dao.user import User [as 别名]
# 或者: from dao.user.User import fromUUID [as 别名]
def getResult(user_uuid):
# This is in here, as opposed to the top level as recommended by the PEP
# because then we don't have to worry about loading bottle in the unit tests
from bottle import template
(prevScore, currScore) = getStoredScore(User.fromUUID(user_uuid))
(level, sublevel) = getLevel(currScore)
otherCurrScoreList = []
for user_uuid_dict in get_uuid_db().find({}, {'uuid': 1, '_id': 0}):
(currPrevScore, currCurrScore) = getStoredScore(User.fromUUID(user_uuid_dict['uuid']))
otherCurrScoreList.append(currCurrScore)
otherCurrScoreList.sort()
renderedTemplate = template("clients/leaderboard/result_template.html",
level_picture_filename = getFileName(level, sublevel),
prevScore = prevScore,
currScore = currScore,
otherCurrScoreList = otherCurrScoreList)
return renderedTemplate
示例7: getResult
# 需要导入模块: from dao.user import User [as 别名]
# 或者: from dao.user.User import fromUUID [as 别名]
def getResult(user_uuid):
# This is in here, as opposed to the top level as recommended by the PEP
# because then we don't have to worry about loading bottle in the unit tests
from bottle import template
(prevScore, currScore) = getStoredScore(User.fromUUID(user_uuid))
(level, sublevel) = getLevel(currScore)
renderedTemplate = template("clients/gamified/result_template.html",
level_picture_filename = getFileName(level, sublevel),
prevScore = prevScore,
currScore = currScore)
return renderedTemplate
示例8: savePredictionsStep
# 需要导入模块: from dao.user import User [as 别名]
# 或者: from dao.user.User import fromUUID [as 别名]
def savePredictionsStep(self):
from dao.user import User
from dao.client import Client
uniqueModes = sorted(set(self.cleanedResultVector))
for i in range(self.predictedProb.shape[0]):
currSectionId = self.sectionIds[i]
currProb = self.convertPredictedProbToMap(self.modeList, uniqueModes, self.predictedProb[i])
logging.debug("Updating probability for section with id = %s" % currSectionId)
self.Sections.update({'_id': currSectionId}, {"$set": {"predicted_mode": currProb}})
currUser = User.fromUUID(self.sectionUserIds[i])
clientSpecificUpdate = Client(currUser.getFirstStudy()).clientSpecificSetters(currUser.uuid, currSectionId, currProb)
if clientSpecificUpdate != None:
self.Sections.update({'_id': currSectionId}, clientSpecificUpdate)
示例9: getSectionFilter
# 需要导入模块: from dao.user import User [as 别名]
# 或者: from dao.user.User import fromUUID [as 别名]
def getSectionFilter(uuid):
from dao.user import User
from datetime import datetime, timedelta
logging.info("testclient.getSectionFilter called for user %s" % uuid)
# If this is the first two weeks, show everything
user = User.fromUUID(uuid)
# Note that this is the last time that the profile was updated. So if the
# user goes to the "Auth" screen and signs in again, it will be updated, and
# we will reset the clock. If this is not acceptable, we need to ensure that
# we have a create ts that is never updated
updateTS = user.getUpdateTS()
if (datetime.now() - updateTS) < timedelta(days = 14):
# In the first two weeks, don't do any filtering
return []
else:
return [{'test_auto_confirmed.prob': {'$lt': 0.9}}]
示例10: updateScoreForDay
# 需要导入模块: from dao.user import User [as 别名]
# 或者: from dao.user.User import fromUUID [as 别名]
def updateScoreForDay(user_uuid, today):
yesterday = today - timedelta(days = 1)
dayBeforeYesterday = today - timedelta(days = 2)
dayBeforeYesterdayStart = datetime.combine(dayBeforeYesterday, dttime.min)
yesterdayStart = datetime.combine(yesterday, dttime.min)
todayStart = datetime.combine(today, dttime.min)
user = User.fromUUID(user_uuid)
(discardedScore, prevScore) = getStoredScore(user)
# Using score from dayBeforeYesterday instead of yesterday because there is
# currently a significant lag in the time for e-mission to prompt for
# entries, so people might not confirm yesterday's trips until sometime
# today, which means that it won't be counted in their score
newScore = prevScore + getScore(user_uuid, dayBeforeYesterdayStart, yesterdayStart)
if newScore < 0:
newScore = 0
stats.storeResultEntry(user_uuid, stats.STAT_GAME_SCORE, time.time(), newScore)
setScores(user, prevScore, newScore)
示例11: getResult
# 需要导入模块: from dao.user import User [as 别名]
# 或者: from dao.user.User import fromUUID [as 别名]
def getResult(user_uuid):
# This is in here, as opposed to the top level as recommended by the PEP
# because then we don't have to worry about loading bottle in the unit tests
from bottle import template
import base64
from dao.user import User
from dao.client import Client
user = User.fromUUID(user_uuid)
renderedTemplate = template("clients/choice/result_template.html",
variables = json.dumps({'curr_view': getCurrView(user_uuid),
'uuid': str(user_uuid),
'client_key': Client("choice").getClientKey()}),
gameResult = base64.b64encode(gamified.getResult(user_uuid)),
leaderboardResult = base64.b64encode(leaderboard.getResult(user_uuid)),
dataResult = base64.b64encode(data.getResult(user_uuid)),
commonTripsResult = base64.b64encode(commontrips.getResult(user_uuid)),
recommendationResult = base64.b64encode(recommendation.getResult(user_uuid)))
return renderedTemplate
示例12: testRunBackgroundTasksForDay
# 需要导入模块: from dao.user import User [as 别名]
# 或者: from dao.user.User import fromUUID [as 别名]
def testRunBackgroundTasksForDay(self):
self.testUsers = ["[email protected]", "[email protected]", "[email protected]",
"[email protected]", "[email protected]"]
load_database_json.loadTable(self.serverName, "Stage_Modes", "tests/data/modes.json")
load_database_json.loadTable(self.serverName, "Stage_Sections", "tests/data/testCarbonFile")
# Let's make sure that the users are registered so that they have profiles
for userEmail in self.testUsers:
User.register(userEmail)
self.SectionsColl = get_section_db()
tests.common.updateSections(self)
self.assertNotEqual(len(self.uuid_list), 0)
# Can access the zeroth element because we know that then length is greater than zero
# (see above)
test_uuid = self.uuid_list[0]
test_user = User.fromUUID(test_uuid)
self.assertNotIn('carbon_footprint', test_user.getProfile().keys())
data.runBackgroundTasks(test_user.uuid)
self.assertIn('carbon_footprint', test_user.getProfile().keys())
示例13: updateUserProfile
# 需要导入模块: from dao.user import User [as 别名]
# 或者: from dao.user.User import fromUUID [as 别名]
def updateUserProfile():
logging.debug("Called updateUserProfile")
user_uuid = getUUID(request)
user = User.fromUUID(user_uuid)
mpg_array = request.json['mpg_array']
return user.setMpgArray(mpg_array)
示例14: get_uuid_db
# 需要导入模块: from dao.user import User [as 别名]
# 或者: from dao.user.User import fromUUID [as 别名]
# But I need to go through and fix the existing users
# For all users who are not in the "gamified" group, we need to move their
# carbon footprint from the currentScore field to the carbon_footprint field,
# and delete the currentScore and previousScore fields
from get_database import get_uuid_db, get_profile_db
from dao.user import User
from clients.default import default
import logging
logging.basicConfig(level=logging.DEBUG)
for user_uuid_dict in get_uuid_db().find({}, {'uuid': 1, '_id': 0}):
currUUID = user_uuid_dict['uuid']
logging.info("Fixing results for %s" % currUUID)
currUser = User.fromUUID(currUUID)
if currUser.getFirstStudy() is None:
currFootprint = currUser.getProfile().get("currentScore", None)
default.setCarbonFootprint(currUser, currFootprint)
get_profile_db().update({'user_id': currUUID}, {'$unset': {'previousScore': "",
'currentScore': ""}})
logging.debug("After change, currentScore = %s, currFootprint = %s" % (
currUser.getProfile().get("currentScore"),
default.getCarbonFootprint(currUser)))
# Informal testing from the command line since this is a one-time script
# Can be pulled out into a unit test if reworked
# Test setup steps from the REPL:
# In [52]: userTest = User.register("[email protected]")
# In [53]: userTest1 = User.register("[email protected]")
# In [54]: gamified.setScores(userTest, None, [{}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}])
示例15: updateUserCreateTime
# 需要导入模块: from dao.user import User [as 别名]
# 或者: from dao.user.User import fromUUID [as 别名]
def updateUserCreateTime(uuid):
from datetime import datetime, timedelta
from dao.user import User
user = User.fromUUID(uuid)
user.changeUpdateTs(timedelta(days = -20))