本文整理汇总了Python中ctapipe.instrument.CameraGeometry.make_rectangular方法的典型用法代码示例。如果您正苦于以下问题:Python CameraGeometry.make_rectangular方法的具体用法?Python CameraGeometry.make_rectangular怎么用?Python CameraGeometry.make_rectangular使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类ctapipe.instrument.CameraGeometry
的用法示例。
在下文中一共展示了CameraGeometry.make_rectangular方法的6个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: test_tailcuts_clean_min_neighbors_1
# 需要导入模块: from ctapipe.instrument import CameraGeometry [as 别名]
# 或者: from ctapipe.instrument.CameraGeometry import make_rectangular [as 别名]
def test_tailcuts_clean_min_neighbors_1():
"""
requiring that picture pixels have at least one neighbor above picture_thres:
"""
# start with simple 3-pixel camera
geom = CameraGeometry.make_rectangular(3, 1, (-1, 1))
p = 15 # picture value
b = 7 # boundary value
testcases = {(p, p, 0): [True, True, False],
(p, 0, p): [False, False, False],
(p, b, p): [False, False, False],
(p, b, 0): [False, False, False],
(b, b, 0): [False, False, False],
(0, p, 0): [False, False, False],
(p, p, p): [True, True, True]}
for image, mask in testcases.items():
result = cleaning.tailcuts_clean(geom, np.array(image),
picture_thresh=15,
boundary_thresh=5,
min_number_picture_neighbors=1,
keep_isolated_pixels=False)
assert (result == mask).all()
示例2: test_neighbor_pixels
# 需要导入模块: from ctapipe.instrument import CameraGeometry [as 别名]
# 或者: from ctapipe.instrument.CameraGeometry import make_rectangular [as 别名]
def test_neighbor_pixels():
hexgeom = CameraGeometry.from_name("LSTCam")
recgeom = CameraGeometry.make_rectangular()
# most pixels should have 4 neighbors for rectangular geometry and 6 for
# hexagonal
assert int(median(recgeom.neighbor_matrix.sum(axis=1))) == 4
assert int(median(hexgeom.neighbor_matrix.sum(axis=1))) == 6
示例3: test_tailcuts_clean_with_isolated_pixels
# 需要导入模块: from ctapipe.instrument import CameraGeometry [as 别名]
# 或者: from ctapipe.instrument.CameraGeometry import make_rectangular [as 别名]
def test_tailcuts_clean_with_isolated_pixels():
# start with simple 3-pixel camera
geom = CameraGeometry.make_rectangular(3, 1, (-1, 1))
p = 15 # picture value
b = 7 # boundary value
testcases = {(p, p, 0): [True, True, False],
(p, 0, p): [True, False, True],
(p, b, p): [True, True, True],
(p, b, 0): [True, True, False],
(0, p, 0): [False, True, False],
(b, b, 0): [False, False, False]}
for image, mask in testcases.items():
result = cleaning.tailcuts_clean(geom, np.array(image),
picture_thresh=15,
boundary_thresh=5,
keep_isolated_pixels=True)
assert (result == mask).all()
示例4: test_make_rectangular_camera_geometry
# 需要导入模块: from ctapipe.instrument import CameraGeometry [as 别名]
# 或者: from ctapipe.instrument.CameraGeometry import make_rectangular [as 别名]
def test_make_rectangular_camera_geometry():
geom = CameraGeometry.make_rectangular()
assert geom.pix_x.shape == geom.pix_y.shape
示例5: imshow
# 需要导入模块: from ctapipe.instrument import CameraGeometry [as 别名]
# 或者: from ctapipe.instrument.CameraGeometry import make_rectangular [as 别名]
"""Example how to make a toymodel shower image and plot it.
"""
import matplotlib.pyplot as plt
from ctapipe.image.toymodel import generate_2d_shower_model, \
make_toymodel_shower_image
from ctapipe.instrument import CameraGeometry
NX = 40
NY = 40
geom = CameraGeometry.make_rectangular(NX, NY)
showermodel = generate_2d_shower_model(centroid=[0.25, 0.0], length=0.1,
width=0.02, psi='40d')
image, signal, noise = make_toymodel_shower_image(geom, showermodel.pdf,
intensity=20, nsb_level_pe=30)
# make them into 2D arrays so we can plot them with imshow
image.shape = (NX, NY)
signal.shape = (NX, NY)
noise.shape = (NX, NY)
# here we just plot the images using imshow(). For a more general
# case, one should use a ctapipe.visualization.CameraDisplay
plt.figure(figsize=(10, 3))
plt.subplot(1, 3, 1)
plt.imshow(signal, interpolation='nearest', origin='lower')
plt.title("Signal")
plt.colorbar()
plt.subplot(1, 3, 2)
示例6: tailcuts_clean
# 需要导入模块: from ctapipe.instrument import CameraGeometry [as 别名]
# 或者: from ctapipe.instrument.CameraGeometry import make_rectangular [as 别名]
)
mask = tailcuts_clean(
geom,
image,
picture_thresh=6 * image.mean(),
boundary_thresh=4 * image.mean()
)
cleaned = image.copy()
cleaned[~mask] = 0
hillas = hillas_parameters(geom, cleaned)
disp.image = image
disp.add_colorbar(ax=axs[ii])
disp.set_limits_percent(95)
disp.overlay_moments(hillas, linewidth=3, color='blue')
if __name__ == '__main__':
hexgeom = CameraGeometry.from_name("LSTCam")
recgeom = CameraGeometry.make_rectangular()
draw_several_cams(recgeom)
draw_several_cams(hexgeom)
plt.tight_layout()
plt.show()