本文整理汇总了Python中coverage_model.parameter.ParameterDictionary.iteritems方法的典型用法代码示例。如果您正苦于以下问题:Python ParameterDictionary.iteritems方法的具体用法?Python ParameterDictionary.iteritems怎么用?Python ParameterDictionary.iteritems使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类coverage_model.parameter.ParameterDictionary
的用法示例。
在下文中一共展示了ParameterDictionary.iteritems方法的5个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: _create_input_param_dict_for_test
# 需要导入模块: from coverage_model.parameter import ParameterDictionary [as 别名]
# 或者: from coverage_model.parameter.ParameterDictionary import iteritems [as 别名]
def _create_input_param_dict_for_test(self, parameter_dict_name = ''):
pdict = ParameterDictionary()
t_ctxt = ParameterContext('time', param_type=QuantityType(value_encoding=numpy.dtype('float64')))
t_ctxt.axis = AxisTypeEnum.TIME
t_ctxt.uom = 'seconds since 01-01-1900'
pdict.add_context(t_ctxt)
cond_ctxt = ParameterContext('conductivity', param_type=QuantityType(value_encoding=numpy.dtype('float32')))
cond_ctxt.uom = 'Siemens_per_meter'
pdict.add_context(cond_ctxt)
pres_ctxt = ParameterContext('pressure', param_type=QuantityType(value_encoding=numpy.dtype('float32')))
pres_ctxt.uom = 'Pascal'
pdict.add_context(pres_ctxt)
if parameter_dict_name == 'input_param_for_L0':
temp_ctxt = ParameterContext('temperature', param_type=QuantityType(value_encoding=numpy.dtype('float32')))
else:
temp_ctxt = ParameterContext('temp', param_type=QuantityType(value_encoding=numpy.dtype('float32')))
temp_ctxt.uom = 'degree_kelvin'
pdict.add_context(temp_ctxt)
dens_ctxt = ParameterContext('density', param_type=QuantityType(value_encoding=numpy.dtype('float32')))
dens_ctxt.uom = 'g/m'
pdict.add_context(dens_ctxt)
sal_ctxt = ParameterContext('salinity', param_type=QuantityType(value_encoding=numpy.dtype('float32')))
sal_ctxt.uom = 'PSU'
pdict.add_context(sal_ctxt)
#create temp streamdef so the data product can create the stream
pc_list = []
for pc_k, pc in pdict.iteritems():
ctxt_id = self.dataset_management.create_parameter_context(pc_k, pc[1].dump())
pc_list.append(ctxt_id)
if parameter_dict_name == 'input_param_for_L0':
self.addCleanup(self.dataset_management.delete_parameter_context,ctxt_id)
elif pc[1].name == 'temp':
self.addCleanup(self.dataset_management.delete_parameter_context,ctxt_id)
pdict_id = self.dataset_management.create_parameter_dictionary(parameter_dict_name, pc_list)
self.addCleanup(self.dataset_management.delete_parameter_dictionary, pdict_id)
return pdict_id
示例2: _create_input_param_dict_for_test
# 需要导入模块: from coverage_model.parameter import ParameterDictionary [as 别名]
# 或者: from coverage_model.parameter.ParameterDictionary import iteritems [as 别名]
def _create_input_param_dict_for_test(self, parameter_dict_name=""):
pdict = ParameterDictionary()
t_ctxt = ParameterContext("time", param_type=QuantityType(value_encoding=numpy.dtype("float64")))
t_ctxt.axis = AxisTypeEnum.TIME
t_ctxt.uom = "seconds since 01-01-1900"
pdict.add_context(t_ctxt)
cond_ctxt = ParameterContext("conductivity", param_type=QuantityType(value_encoding=numpy.dtype("float32")))
cond_ctxt.uom = ""
pdict.add_context(cond_ctxt)
pres_ctxt = ParameterContext("pressure", param_type=QuantityType(value_encoding=numpy.dtype("float32")))
pres_ctxt.uom = ""
pdict.add_context(pres_ctxt)
if parameter_dict_name == "input_param_dict":
temp_ctxt = ParameterContext("temperature", param_type=QuantityType(value_encoding=numpy.dtype("float32")))
else:
temp_ctxt = ParameterContext("temp", param_type=QuantityType(value_encoding=numpy.dtype("float32")))
temp_ctxt.uom = ""
pdict.add_context(temp_ctxt)
dens_ctxt = ParameterContext("density", param_type=QuantityType(value_encoding=numpy.dtype("float32")))
dens_ctxt.uom = ""
pdict.add_context(dens_ctxt)
sal_ctxt = ParameterContext("salinity", param_type=QuantityType(value_encoding=numpy.dtype("float32")))
sal_ctxt.uom = ""
pdict.add_context(sal_ctxt)
# create temp streamdef so the data product can create the stream
pc_list = []
for pc_k, pc in pdict.iteritems():
ctxt_id = self.dataset_management.create_parameter_context(pc_k, pc[1].dump())
pc_list.append(ctxt_id)
if parameter_dict_name == "input_param_dict":
self.addCleanup(self.dataset_management.delete_parameter_context, ctxt_id)
elif parameter_dict_name == "output_param_dict" and pc[1].name == "temp":
self.addCleanup(self.dataset_management.delete_parameter_context, ctxt_id)
pdict_id = self.dataset_management.create_parameter_dictionary(parameter_dict_name, pc_list)
self.addCleanup(self.dataset_management.delete_parameter_dictionary, pdict_id)
return pdict_id
示例3: SimplexCoverage
# 需要导入模块: from coverage_model.parameter import ParameterDictionary [as 别名]
# 或者: from coverage_model.parameter.ParameterDictionary import iteritems [as 别名]
#.........这里部分代码省略.........
self._range_dictionary.add_context(pcontext)
s = self._persistence_layer.init_parameter(pcontext, self._bricking_scheme)
self._range_value[pname] = get_value_class(param_type=pcontext.param_type, domain_set=pcontext.dom, storage=s)
def get_parameter(self, param_name):
"""
Get a Parameter object by name
The Parameter object contains the ParameterContext and AbstractParameterValue associated with the param_name
@param param_name The local name of the parameter to return
@returns A Parameter object containing the context and value for the specified parameter
@throws KeyError The coverage does not contain a parameter with name 'param_name'
"""
if self.closed:
raise ValueError('I/O operation on closed file')
if param_name in self._range_dictionary:
p = Parameter(deepcopy(self._range_dictionary.get_context(param_name)), self._range_value[param_name].shape, self._range_value[param_name])
return p
else:
raise KeyError('Coverage does not contain parameter \'{0}\''.format(param_name))
def list_parameters(self, coords_only=False, data_only=False):
"""
List the names of the parameters contained in the coverage
@param coords_only List only the coordinate parameters
@param data_only List only the data parameters (non-coordinate) - superseded by coords_only
@returns A list of parameter names
"""
if coords_only:
lst=[x for x, v in self._range_dictionary.iteritems() if v[1].is_coordinate]
elif data_only:
lst=[x for x, v in self._range_dictionary.iteritems() if not v[1].is_coordinate]
else:
lst=[x for x in self._range_dictionary]
lst.sort()
return lst
def insert_timesteps(self, count, origin=None, oob=True):
"""
Insert count # of timesteps beginning at the origin
The specified # of timesteps are inserted into the temporal value array at the indicated origin. This also
expands the temporal dimension of the AbstractParameterValue for each parameters
@param count The number of timesteps to insert
@param origin The starting location, from which to begin the insertion
@param oob Out of band operations, True will use greenlets, False will be in-band.
"""
if self.closed:
raise IOError('I/O operation on closed file')
if self.mode == 'r':
raise IOError('Coverage not open for writing: mode == \'{0}\''.format(self.mode))
# Get the current shape of the temporal_dimension
shp = self.temporal_domain.shape
# If not provided, set the origin to the end of the array
if origin is None or not isinstance(origin, int):
origin = shp.extents[0]
# Expand the shape of the temporal_domain - following works if extents is a list or tuple
示例4: _setup_resources
# 需要导入模块: from coverage_model.parameter import ParameterDictionary [as 别名]
# 或者: from coverage_model.parameter.ParameterDictionary import iteritems [as 别名]
def _setup_resources(self):
# TODO: some or all of this (or some variation) should move to DAMS'
# Build the test resources for the dataset
dms_cli = DatasetManagementServiceClient()
dams_cli = DataAcquisitionManagementServiceClient()
dpms_cli = DataProductManagementServiceClient()
rr_cli = ResourceRegistryServiceClient()
pubsub_cli = PubsubManagementServiceClient()
eda = ExternalDatasetAgent(name='example data agent', handler_module=self.DVR_CONFIG['dvr_mod'], handler_class=self.DVR_CONFIG['dvr_cls'])
eda_id = dams_cli.create_external_dataset_agent(eda)
eda_inst = ExternalDatasetAgentInstance(name='example dataset agent instance')
eda_inst_id = dams_cli.create_external_dataset_agent_instance(eda_inst, external_dataset_agent_id=eda_id)
# Create and register the necessary resources/objects
# Create DataProvider
dprov = ExternalDataProvider(name='example data provider', institution=Institution(), contact=ContactInformation())
dprov.contact.individual_names_given = 'Christopher Mueller'
dprov.contact.email = '[email protected]'
# Create DataSource
dsrc = DataSource(name='example datasource', protocol_type='FILE', institution=Institution(), contact=ContactInformation())
dsrc.connection_params['base_data_url'] = ''
dsrc.contact.individual_names_given = 'Tim Giguere'
dsrc.contact.email = 'tgiguere[email protected]'
# Create ExternalDataset
ds_name = 'ruv_test_dataset'
dset = ExternalDataset(name=ds_name, dataset_description=DatasetDescription(), update_description=UpdateDescription(), contact=ContactInformation())
dset.dataset_description.parameters['base_url'] = 'test_data/ruv/'
dset.dataset_description.parameters['list_pattern'] = 'RDLi_SEAB_2011_08_24_1600.ruv'
dset.dataset_description.parameters['date_pattern'] = '%Y %m %d %H %M'
dset.dataset_description.parameters['date_extraction_pattern'] = 'RDLi_SEAB_([\d]{4})_([\d]{2})_([\d]{2})_([\d]{2})([\d]{2}).ruv'
dset.dataset_description.parameters['temporal_dimension'] = None
dset.dataset_description.parameters['zonal_dimension'] = None
dset.dataset_description.parameters['meridional_dimension'] = None
dset.dataset_description.parameters['vertical_dimension'] = None
dset.dataset_description.parameters['variables'] = [
]
# Create DataSourceModel
dsrc_model = DataSourceModel(name='ruv_model')
#dsrc_model.model = 'RUV'
dsrc_model.data_handler_module = 'N/A'
dsrc_model.data_handler_class = 'N/A'
## Run everything through DAMS
ds_id = dams_cli.create_external_dataset(external_dataset=dset)
ext_dprov_id = dams_cli.create_external_data_provider(external_data_provider=dprov)
ext_dsrc_id = dams_cli.create_data_source(data_source=dsrc)
ext_dsrc_model_id = dams_cli.create_data_source_model(dsrc_model)
# Register the ExternalDataset
dproducer_id = dams_cli.register_external_data_set(external_dataset_id=ds_id)
# Or using each method
dams_cli.assign_data_source_to_external_data_provider(data_source_id=ext_dsrc_id, external_data_provider_id=ext_dprov_id)
dams_cli.assign_data_source_to_data_model(data_source_id=ext_dsrc_id, data_source_model_id=ext_dsrc_model_id)
dams_cli.assign_external_dataset_to_data_source(external_dataset_id=ds_id, data_source_id=ext_dsrc_id)
dams_cli.assign_external_dataset_to_agent_instance(external_dataset_id=ds_id, agent_instance_id=eda_inst_id)
pdict = ParameterDictionary()
t_ctxt = ParameterContext('data', param_type=QuantityType(value_encoding=numpy.dtype('int64')))
t_ctxt.axis = AxisTypeEnum.TIME
t_ctxt.uom = 'seconds since 01-01-1970'
pdict.add_context(t_ctxt)
#create temp streamdef so the data product can create the stream
pc_list = []
for pc_k, pc in pdict.iteritems():
pc_list.append(dms_cli.create_parameter_context(pc_k, pc[1].dump()))
pdict_id = dms_cli.create_parameter_dictionary('ruv_param_dict', pc_list)
streamdef_id = pubsub_cli.create_stream_definition(name="ruv", description="stream def for ruv testing", parameter_dictionary_id=pdict_id)
tdom, sdom = time_series_domain()
tdom, sdom = tdom.dump(), sdom.dump()
dprod = IonObject(RT.DataProduct,
name='ruv_parsed_product',
description='parsed ruv product',
temporal_domain=tdom,
spatial_domain=sdom)
# Generate the data product and associate it to the ExternalDataset
dproduct_id = dpms_cli.create_data_product(data_product=dprod,
stream_definition_id=streamdef_id)
dams_cli.assign_data_product(input_resource_id=ds_id, data_product_id=dproduct_id)
stream_id, assn = rr_cli.find_objects(subject=dproduct_id, predicate=PRED.hasStream, object_type=RT.Stream, id_only=True)
stream_id = stream_id[0]
log.info('Created resources: {0}'.format({'ExternalDataset': ds_id, 'ExternalDataProvider': ext_dprov_id, 'DataSource': ext_dsrc_id, 'DataSourceModel': ext_dsrc_model_id, 'DataProducer': dproducer_id, 'DataProduct': dproduct_id, 'Stream': stream_id}))
#.........这里部分代码省略.........
示例5: SimplexCoverage
# 需要导入模块: from coverage_model.parameter import ParameterDictionary [as 别名]
# 或者: from coverage_model.parameter.ParameterDictionary import iteritems [as 别名]
#.........这里部分代码省略.........
dom.crs.axes[pcontext.reference_frame] = pcontext.name
elif not no_sdom and (pcontext.reference_frame in self.spatial_domain.crs.axes):
dom.crs.axes[pcontext.reference_frame] = pcontext.name
self._range_dictionary.add_context(pcontext)
s = self._persistence_layer.init_parameter(pcontext, self._bricking_scheme, is_temporal_param=is_tparam)
self._range_value[pname] = get_value_class(param_type=pcontext.param_type, domain_set=pcontext.dom, storage=s)
def get_parameter(self, param_name):
"""
Get a Parameter object by name
The Parameter object contains the ParameterContext and AbstractParameterValue associated with the param_name
@param param_name The local name of the parameter to return
@returns A Parameter object containing the context and value for the specified parameter
@throws KeyError The coverage does not contain a parameter with name 'param_name'
"""
if param_name in self._range_dictionary:
p = Parameter(self._range_dictionary.get_context(param_name), self._range_value[param_name].shape, self._range_value[param_name])
return p
else:
raise KeyError('Coverage does not contain parameter \'{0}\''.format(param_name))
def list_parameters(self, coords_only=False, data_only=False):
"""
List the names of the parameters contained in the coverage
@param coords_only List only the coordinate parameters
@param data_only List only the data parameters (non-coordinate) - superseded by coords_only
@returns A list of parameter names
"""
if coords_only:
lst=[x for x, v in self._range_dictionary.iteritems() if v[1].is_coordinate]
elif data_only:
lst=[x for x, v in self._range_dictionary.iteritems() if not v[1].is_coordinate]
else:
lst=[x for x in self._range_dictionary]
lst.sort()
return lst
def insert_timesteps(self, count, origin=None):
"""
Insert count # of timesteps beginning at the origin
The specified # of timesteps are inserted into the temporal value array at the indicated origin. This also
expands the temporal dimension of the AbstractParameterValue for each parameters
@param count The number of timesteps to insert
@param origin The starting location, from which to begin the insertion
"""
# Get the current shape of the temporal_dimension
shp = self.temporal_domain.shape
# If not provided, set the origin to the end of the array
if origin is None or not isinstance(origin, int):
origin = shp.extents[0]
# Expand the shape of the temporal_domain - following works if extents is a list or tuple
shp.extents = (shp.extents[0]+count,)+tuple(shp.extents[1:])
# Expand the temporal dimension of each of the parameters - the parameter determines how to apply the change
for n in self._range_dictionary:
pc = self._range_dictionary.get_context(n)
# Update the dom of the parameter_context