当前位置: 首页>>代码示例>>Python>>正文


Python ParameterContext.axis方法代码示例

本文整理汇总了Python中coverage_model.ParameterContext.axis方法的典型用法代码示例。如果您正苦于以下问题:Python ParameterContext.axis方法的具体用法?Python ParameterContext.axis怎么用?Python ParameterContext.axis使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在coverage_model.ParameterContext的用法示例。


在下文中一共展示了ParameterContext.axis方法的8个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: create_extended_parsed_contexts

# 需要导入模块: from coverage_model import ParameterContext [as 别名]
# 或者: from coverage_model.ParameterContext import axis [as 别名]
    def create_extended_parsed_contexts(self):
        contexts, funcs = self.create_parsed_params()
        expr, expr_id = funcs['density_L2']
        
        density_lookup_map = {'conductivity':'conductivity_L1', 'temp':'temp_L1', 'pressure':'pressure_L1', 'lat':'lat_lookup', 'lon':'lon_lookup'}
        expr.param_map = density_lookup_map
        density_lookup_ctxt = ParameterContext('density_lookup', param_type=ParameterFunctionType(expr), variability=VariabilityEnum.TEMPORAL)
        density_lookup_ctxt.uom = 'kg m-3'
        density_lookup_ctxt_id = self.dataset_management.create_parameter_context(name='density_lookup', parameter_context=density_lookup_ctxt.dump(), parameter_function_id=expr_id)
        self.addCleanup(self.dataset_management.delete_parameter_context, density_lookup_ctxt_id)
        contexts['density_lookup'] = density_lookup_ctxt, density_lookup_ctxt_id


        lat_lookup_ctxt = ParameterContext('lat_lookup', param_type=ConstantType(QuantityType(value_encoding=np.dtype('float32'))), fill_value=-9999)
        lat_lookup_ctxt.axis = AxisTypeEnum.LAT
        lat_lookup_ctxt.uom = 'degree_north'
        lat_lookup_ctxt.lookup_value = 'lat'
        lat_lookup_ctxt.document_key = ''
        lat_lookup_ctxt_id = self.dataset_management.create_parameter_context(name='lat_lookup', parameter_context=lat_lookup_ctxt.dump())
        self.addCleanup(self.dataset_management.delete_parameter_context, lat_lookup_ctxt_id)
        contexts['lat_lookup'] = lat_lookup_ctxt, lat_lookup_ctxt_id
        

        lon_lookup_ctxt = ParameterContext('lon_lookup', param_type=ConstantType(QuantityType(value_encoding=np.dtype('float32'))), fill_value=-9999)
        lon_lookup_ctxt.axis = AxisTypeEnum.LON
        lon_lookup_ctxt.uom = 'degree_east'
        lon_lookup_ctxt.lookup_value = 'lon'
        lon_lookup_ctxt.document_key = ''
        lon_lookup_ctxt_id = self.dataset_management.create_parameter_context(name='lon_lookup', parameter_context=lon_lookup_ctxt.dump())
        self.addCleanup(self.dataset_management.delete_parameter_context, lon_lookup_ctxt_id)
        contexts['lon_lookup'] = lon_lookup_ctxt, lon_lookup_ctxt_id

        return contexts, funcs
开发者ID:jamie-cyber1,项目名称:coi-services,代码行数:35,代码来源:parameter_helper.py

示例2: _L0_pdict

# 需要导入模块: from coverage_model import ParameterContext [as 别名]
# 或者: from coverage_model.ParameterContext import axis [as 别名]
    def _L0_pdict(self):

        t_ctxt = ParameterContext('time', param_type=QuantityType(value_encoding=np.dtype('int64')))
        t_ctxt.uom = 'seconds since 01-01-1900'
        t_ctxt.fill_value = -9999
        t_ctxt_id = self.dataset_management.create_parameter_context(name='time', parameter_context=t_ctxt.dump(), parameter_type='quantity<int64>', unit_of_measure=t_ctxt.uom)

        lat_ctxt = ParameterContext('lat', param_type=ConstantType(QuantityType(value_encoding=np.dtype('float32'))))
        lat_ctxt.axis = AxisTypeEnum.LAT
        lat_ctxt.uom = 'degree_north'
        lat_ctxt.fill_value = -9999
        lat_ctxt_id = self.dataset_management.create_parameter_context(name='lat', parameter_context=lat_ctxt.dump(), parameter_type='quantity<float32>', unit_of_measure=lat_ctxt.uom)

        lon_ctxt = ParameterContext('lon', param_type=ConstantType(QuantityType(value_encoding=np.dtype('float32'))))
        lon_ctxt.axis = AxisTypeEnum.LON
        lon_ctxt.uom = 'degree_east'
        lon_ctxt.fill_value = -9999
        lon_ctxt_id = self.dataset_management.create_parameter_context(name='lon', parameter_context=lon_ctxt.dump(), parameter_type='quantity<float32>', unit_of_measure=lon_ctxt.uom)


        temp_ctxt = ParameterContext('TEMPWAT_L0', param_type=QuantityType(value_encoding=np.dtype('float32')))
        temp_ctxt.uom = 'deg_C'
        temp_ctxt.fill_value = -9999
        temp_ctxt_id = self.dataset_management.create_parameter_context(name='TEMPWAT_L0', parameter_context=temp_ctxt.dump(), parameter_type='quantity<float32>', unit_of_measure=temp_ctxt.uom)

        # Conductivity - values expected to be the decimal results of conversion from hex
        cond_ctxt = ParameterContext('CONDWAT_L0', param_type=QuantityType(value_encoding=np.dtype('float32')))
        cond_ctxt.uom = 'S m-1'
        cond_ctxt.fill_value = -9999
        cond_ctxt_id = self.dataset_management.create_parameter_context(name='CONDWAT_L0', parameter_context=cond_ctxt.dump(), parameter_type='quantity<float32>', unit_of_measure=cond_ctxt.uom)

        # Pressure - values expected to be the decimal results of conversion from hex
        press_ctxt = ParameterContext('PRESWAT_L0', param_type=QuantityType(value_encoding=np.dtype('float32')))
        press_ctxt.uom = 'dbar'
        press_ctxt.fill_value = -9999
        press_ctxt_id = self.dataset_management.create_parameter_context(name='PRESWAT_L0', parameter_context=press_ctxt.dump(), parameter_type='quantity<float32>', unit_of_measure=press_ctxt.uom)


        context_ids = [t_ctxt_id, lat_ctxt_id, lon_ctxt_id, temp_ctxt_id, cond_ctxt_id, press_ctxt_id]

        pdict_id = self.dataset_management.create_parameter_dictionary('L0 SBE37', parameter_context_ids=context_ids, temporal_context='time')

        return pdict_id
开发者ID:blazetopher,项目名称:coi-services,代码行数:45,代码来源:test_transform_prime.py

示例3: _create_input_param_dict_for_test

# 需要导入模块: from coverage_model import ParameterContext [as 别名]
# 或者: from coverage_model.ParameterContext import axis [as 别名]
    def _create_input_param_dict_for_test(self, parameter_dict_name = ''):

        pdict = ParameterDictionary()

        t_ctxt = ParameterContext('time', param_type=QuantityType(value_encoding=numpy.dtype('float64')))
        t_ctxt.axis = AxisTypeEnum.TIME
        t_ctxt.uom = 'seconds since 01-01-1900'
        pdict.add_context(t_ctxt)

        cond_ctxt = ParameterContext('conductivity', param_type=QuantityType(value_encoding=numpy.dtype('float32')))
        cond_ctxt.uom = 'Siemens_per_meter'
        pdict.add_context(cond_ctxt)

        pres_ctxt = ParameterContext('pressure', param_type=QuantityType(value_encoding=numpy.dtype('float32')))
        pres_ctxt.uom = 'Pascal'
        pdict.add_context(pres_ctxt)

        if parameter_dict_name == 'input_param_for_L0':
            temp_ctxt = ParameterContext('temperature', param_type=QuantityType(value_encoding=numpy.dtype('float32')))
        else:
            temp_ctxt = ParameterContext('temp', param_type=QuantityType(value_encoding=numpy.dtype('float32')))

        temp_ctxt.uom = 'degree_kelvin'
        pdict.add_context(temp_ctxt)

        dens_ctxt = ParameterContext('density', param_type=QuantityType(value_encoding=numpy.dtype('float32')))
        dens_ctxt.uom = 'g/m'
        pdict.add_context(dens_ctxt)

        sal_ctxt = ParameterContext('salinity', param_type=QuantityType(value_encoding=numpy.dtype('float32')))
        sal_ctxt.uom = 'PSU'
        pdict.add_context(sal_ctxt)

        #create temp streamdef so the data product can create the stream
        pc_list = []
        for pc_k, pc in pdict.iteritems():
            ctxt_id = self.dataset_management.create_parameter_context(pc_k, pc[1].dump())
            pc_list.append(ctxt_id)
            if parameter_dict_name == 'input_param_for_L0':
                self.addCleanup(self.dataset_management.delete_parameter_context,ctxt_id)
            elif pc[1].name == 'temp':
                self.addCleanup(self.dataset_management.delete_parameter_context,ctxt_id)

        pdict_id = self.dataset_management.create_parameter_dictionary(parameter_dict_name, pc_list)
        self.addCleanup(self.dataset_management.delete_parameter_dictionary, pdict_id)

        return pdict_id
开发者ID:Bobfrat,项目名称:coi-services,代码行数:49,代码来源:test_ctdbp_chain_L0_L1_L2.py

示例4: _create_input_param_dict_for_test

# 需要导入模块: from coverage_model import ParameterContext [as 别名]
# 或者: from coverage_model.ParameterContext import axis [as 别名]
    def _create_input_param_dict_for_test(self, parameter_dict_name=""):

        pdict = ParameterDictionary()

        t_ctxt = ParameterContext("time", param_type=QuantityType(value_encoding=numpy.dtype("float64")))
        t_ctxt.axis = AxisTypeEnum.TIME
        t_ctxt.uom = "seconds since 01-01-1900"
        pdict.add_context(t_ctxt)

        cond_ctxt = ParameterContext("conductivity", param_type=QuantityType(value_encoding=numpy.dtype("float32")))
        cond_ctxt.uom = ""
        pdict.add_context(cond_ctxt)

        pres_ctxt = ParameterContext("pressure", param_type=QuantityType(value_encoding=numpy.dtype("float32")))
        pres_ctxt.uom = ""
        pdict.add_context(pres_ctxt)

        if parameter_dict_name == "input_param_dict":
            temp_ctxt = ParameterContext("temperature", param_type=QuantityType(value_encoding=numpy.dtype("float32")))
        else:
            temp_ctxt = ParameterContext("temp", param_type=QuantityType(value_encoding=numpy.dtype("float32")))

        temp_ctxt.uom = ""
        pdict.add_context(temp_ctxt)

        dens_ctxt = ParameterContext("density", param_type=QuantityType(value_encoding=numpy.dtype("float32")))
        dens_ctxt.uom = ""
        pdict.add_context(dens_ctxt)

        sal_ctxt = ParameterContext("salinity", param_type=QuantityType(value_encoding=numpy.dtype("float32")))
        sal_ctxt.uom = ""
        pdict.add_context(sal_ctxt)

        # create temp streamdef so the data product can create the stream
        pc_list = []
        for pc_k, pc in pdict.iteritems():
            ctxt_id = self.dataset_management.create_parameter_context(pc_k, pc[1].dump())
            pc_list.append(ctxt_id)
            if parameter_dict_name == "input_param_dict":
                self.addCleanup(self.dataset_management.delete_parameter_context, ctxt_id)
            elif parameter_dict_name == "output_param_dict" and pc[1].name == "temp":
                self.addCleanup(self.dataset_management.delete_parameter_context, ctxt_id)

        pdict_id = self.dataset_management.create_parameter_dictionary(parameter_dict_name, pc_list)
        self.addCleanup(self.dataset_management.delete_parameter_dictionary, pdict_id)

        return pdict_id
开发者ID:jamie-cyber1,项目名称:coi-services,代码行数:49,代码来源:test_ctdbp_L1.py

示例5: _get_pdict

# 需要导入模块: from coverage_model import ParameterContext [as 别名]
# 或者: from coverage_model.ParameterContext import axis [as 别名]
    def _get_pdict(self, filter_values):
        t_ctxt = ParameterContext('TIME', param_type=QuantityType(value_encoding=np.dtype('int64')))
        t_ctxt.uom = 'seconds since 01-01-1900'
        t_ctxt_id = self.dataset_management.create_parameter_context(name='TIME', parameter_context=t_ctxt.dump(), parameter_type='quantity<int64>', units=t_ctxt.uom)
        self.add_context_to_cleanup(t_ctxt_id)

        lat_ctxt = ParameterContext('LAT', param_type=ConstantType(QuantityType(value_encoding=np.dtype('float32'))), fill_value=-9999)
        lat_ctxt.axis = AxisTypeEnum.LAT
        lat_ctxt.uom = 'degree_north'
        lat_ctxt_id = self.dataset_management.create_parameter_context(name='LAT', parameter_context=lat_ctxt.dump(), parameter_type='quantity<float32>', units=lat_ctxt.uom)
        self.add_context_to_cleanup(lat_ctxt_id)


        lon_ctxt = ParameterContext('LON', param_type=ConstantType(QuantityType(value_encoding=np.dtype('float32'))), fill_value=-9999)
        lon_ctxt.axis = AxisTypeEnum.LON
        lon_ctxt.uom = 'degree_east'
        lon_ctxt_id = self.dataset_management.create_parameter_context(name='LON', parameter_context=lon_ctxt.dump(), parameter_type='quantity<float32>', units=lon_ctxt.uom)
        self.add_context_to_cleanup(lon_ctxt_id)


        # Independent Parameters
         # Temperature - values expected to be the decimal results of conversion from hex
        temp_ctxt = ParameterContext('TEMPWAT_L0', param_type=QuantityType(value_encoding=np.dtype('float32')), fill_value=-9999)
        temp_ctxt.uom = 'deg_C'
        temp_ctxt_id = self.dataset_management.create_parameter_context(name='TEMPWAT_L0', parameter_context=temp_ctxt.dump(), parameter_type='quantity<float32>', units=temp_ctxt.uom)
        self.add_context_to_cleanup(temp_ctxt_id)


        # Conductivity - values expected to be the decimal results of conversion from hex
        cond_ctxt = ParameterContext('CONDWAT_L0', param_type=QuantityType(value_encoding=np.dtype('float32')), fill_value=-9999)
        cond_ctxt.uom = 'S m-1'
        cond_ctxt_id = self.dataset_management.create_parameter_context(name='CONDWAT_L0', parameter_context=cond_ctxt.dump(), parameter_type='quantity<float32>', units=cond_ctxt.uom)
        self.add_context_to_cleanup(cond_ctxt_id)


        # Pressure - values expected to be the decimal results of conversion from hex
        press_ctxt = ParameterContext('PRESWAT_L0', param_type=QuantityType(value_encoding=np.dtype('float32')), fill_value=-9999)
        press_ctxt.uom = 'dbar'
        press_ctxt_id = self.dataset_management.create_parameter_context(name='PRESWAT_L0', parameter_context=press_ctxt.dump(), parameter_type='quantity<float32>', units=press_ctxt.uom)
        self.add_context_to_cleanup(press_ctxt_id)


        # Dependent Parameters

        # TEMPWAT_L1 = (TEMPWAT_L0 / 10000) - 10
        tl1_func = '(T / 10000) - 10'
        tl1_pmap = {'T': 'TEMPWAT_L0'}
        expr = NumexprFunction('TEMPWAT_L1', tl1_func, ['T'], param_map=tl1_pmap)
        tempL1_ctxt = ParameterContext('TEMPWAT_L1', param_type=ParameterFunctionType(function=expr), variability=VariabilityEnum.TEMPORAL)
        tempL1_ctxt.uom = 'deg_C'
        tempL1_ctxt_id = self.dataset_management.create_parameter_context(name=tempL1_ctxt.name, parameter_context=tempL1_ctxt.dump(), parameter_type='pfunc', units=tempL1_ctxt.uom)
        self.add_context_to_cleanup(tempL1_ctxt_id)


        # CONDWAT_L1 = (CONDWAT_L0 / 100000) - 0.5
        cl1_func = '(C / 100000) - 0.5'
        cl1_pmap = {'C': 'CONDWAT_L0'}
        expr = NumexprFunction('CONDWAT_L1', cl1_func, ['C'], param_map=cl1_pmap)
        condL1_ctxt = ParameterContext('CONDWAT_L1', param_type=ParameterFunctionType(function=expr), variability=VariabilityEnum.TEMPORAL)
        condL1_ctxt.uom = 'S m-1'
        condL1_ctxt_id = self.dataset_management.create_parameter_context(name=condL1_ctxt.name, parameter_context=condL1_ctxt.dump(), parameter_type='pfunc', units=condL1_ctxt.uom)
        self.add_context_to_cleanup(condL1_ctxt_id)


        # Equation uses p_range, which is a calibration coefficient - Fixing to 679.34040721
        #   PRESWAT_L1 = (PRESWAT_L0 * p_range / (0.85 * 65536)) - (0.05 * p_range)
        pl1_func = '(P * p_range / (0.85 * 65536)) - (0.05 * p_range)'
        pl1_pmap = {'P': 'PRESWAT_L0', 'p_range': 679.34040721}
        expr = NumexprFunction('PRESWAT_L1', pl1_func, ['P', 'p_range'], param_map=pl1_pmap)
        presL1_ctxt = ParameterContext('PRESWAT_L1', param_type=ParameterFunctionType(function=expr), variability=VariabilityEnum.TEMPORAL)
        presL1_ctxt.uom = 'S m-1'
        presL1_ctxt_id = self.dataset_management.create_parameter_context(name=presL1_ctxt.name, parameter_context=presL1_ctxt.dump(), parameter_type='pfunc', units=presL1_ctxt.uom)
        self.add_context_to_cleanup(presL1_ctxt_id)


        # Density & practical salinity calucluated using the Gibbs Seawater library - available via python-gsw project:
        #       https://code.google.com/p/python-gsw/ & http://pypi.python.org/pypi/gsw/3.0.1

        # PRACSAL = gsw.SP_from_C((CONDWAT_L1 * 10), TEMPWAT_L1, PRESWAT_L1)
        owner = 'gsw'
        sal_func = 'SP_from_C'
        sal_arglist = ['C', 't', 'p']
        sal_pmap = {'C': NumexprFunction('CONDWAT_L1*10', 'C*10', ['C'], param_map={'C': 'CONDWAT_L1'}), 't': 'TEMPWAT_L1', 'p': 'PRESWAT_L1'}
        sal_kwargmap = None
        expr = PythonFunction('PRACSAL', owner, sal_func, sal_arglist, sal_kwargmap, sal_pmap)
        sal_ctxt = ParameterContext('PRACSAL', param_type=ParameterFunctionType(expr), variability=VariabilityEnum.TEMPORAL)
        sal_ctxt.uom = 'g kg-1'
        sal_ctxt_id = self.dataset_management.create_parameter_context(name=sal_ctxt.name, parameter_context=sal_ctxt.dump(), parameter_type='pfunc', units=sal_ctxt.uom)
        self.add_context_to_cleanup(sal_ctxt_id)


        # absolute_salinity = gsw.SA_from_SP(PRACSAL, PRESWAT_L1, longitude, latitude)
        # conservative_temperature = gsw.CT_from_t(absolute_salinity, TEMPWAT_L1, PRESWAT_L1)
        # DENSITY = gsw.rho(absolute_salinity, conservative_temperature, PRESWAT_L1)
        owner = 'gsw'
        abs_sal_expr = PythonFunction('abs_sal', owner, 'SA_from_SP', ['PRACSAL', 'PRESWAT_L1', 'LON','LAT'])
        cons_temp_expr = PythonFunction('cons_temp', owner, 'CT_from_t', [abs_sal_expr, 'TEMPWAT_L1', 'PRESWAT_L1'])
        dens_expr = PythonFunction('DENSITY', owner, 'rho', [abs_sal_expr, cons_temp_expr, 'PRESWAT_L1'])
        dens_ctxt = ParameterContext('DENSITY', param_type=ParameterFunctionType(dens_expr), variability=VariabilityEnum.TEMPORAL)
        dens_ctxt.uom = 'kg m-3'
#.........这里部分代码省略.........
开发者ID:mbarry02,项目名称:coi-services,代码行数:103,代码来源:test_pubsub.py

示例6: create_pfuncs

# 需要导入模块: from coverage_model import ParameterContext [as 别名]
# 或者: from coverage_model.ParameterContext import axis [as 别名]
    def create_pfuncs(self):
        
        contexts = {}
        funcs = {}

        t_ctxt = ParameterContext('TIME', param_type=QuantityType(value_encoding=np.dtype('int64')))
        t_ctxt.uom = 'seconds since 1900-01-01'
        t_ctxt_id = self.dataset_management.create_parameter_context(name='test_TIME', parameter_context=t_ctxt.dump())
        self.addCleanup(self.dataset_management.delete_parameter_context, t_ctxt_id)
        contexts['TIME'] = (t_ctxt, t_ctxt_id)

        lat_ctxt = ParameterContext('LAT', param_type=ConstantType(QuantityType(value_encoding=np.dtype('float32'))), fill_value=-9999)
        lat_ctxt.axis = AxisTypeEnum.LAT
        lat_ctxt.uom = 'degree_north'
        lat_ctxt_id = self.dataset_management.create_parameter_context(name='test_LAT', parameter_context=lat_ctxt.dump())
        self.addCleanup(self.dataset_management.delete_parameter_context, lat_ctxt_id)
        contexts['LAT'] = lat_ctxt, lat_ctxt_id

        lon_ctxt = ParameterContext('LON', param_type=ConstantType(QuantityType(value_encoding=np.dtype('float32'))), fill_value=-9999)
        lon_ctxt.axis = AxisTypeEnum.LON
        lon_ctxt.uom = 'degree_east'
        lon_ctxt_id = self.dataset_management.create_parameter_context(name='test_LON', parameter_context=lon_ctxt.dump())
        self.addCleanup(self.dataset_management.delete_parameter_context, lon_ctxt_id)
        contexts['LON'] = lon_ctxt, lon_ctxt_id

        # Independent Parameters

        # Temperature - values expected to be the decimal results of conversion from hex
        temp_ctxt = ParameterContext('TEMPWAT_L0', param_type=QuantityType(value_encoding=np.dtype('float32')), fill_value=-9999)
        temp_ctxt.uom = 'deg_C'
        temp_ctxt_id = self.dataset_management.create_parameter_context(name='test_TEMPWAT_L0', parameter_context=temp_ctxt.dump())
        self.addCleanup(self.dataset_management.delete_parameter_context, temp_ctxt_id)
        contexts['TEMPWAT_L0'] = temp_ctxt, temp_ctxt_id

        # Conductivity - values expected to be the decimal results of conversion from hex
        cond_ctxt = ParameterContext('CONDWAT_L0', param_type=QuantityType(value_encoding=np.dtype('float32')), fill_value=-9999)
        cond_ctxt.uom = 'S m-1'
        cond_ctxt_id = self.dataset_management.create_parameter_context(name='test_CONDWAT_L0', parameter_context=cond_ctxt.dump())
        self.addCleanup(self.dataset_management.delete_parameter_context, cond_ctxt_id)
        contexts['CONDWAT_L0'] = cond_ctxt, cond_ctxt_id

        # Pressure - values expected to be the decimal results of conversion from hex
        press_ctxt = ParameterContext('PRESWAT_L0', param_type=QuantityType(value_encoding=np.dtype('float32')), fill_value=-9999)
        press_ctxt.uom = 'dbar'
        press_ctxt_id = self.dataset_management.create_parameter_context(name='test_PRESWAT_L0', parameter_context=press_ctxt.dump())
        self.addCleanup(self.dataset_management.delete_parameter_context, press_ctxt_id)
        contexts['PRESWAT_L0'] = press_ctxt, press_ctxt_id


        # Dependent Parameters

        # TEMPWAT_L1 = (TEMPWAT_L0 / 10000) - 10
        tl1_func = '(T / 10000) - 10'
        expr = NumexprFunction('TEMPWAT_L1', tl1_func, ['T'])
        expr_id = self.dataset_management.create_parameter_function(name='test_TEMPWAT_L1', parameter_function=expr.dump())
        self.addCleanup(self.dataset_management.delete_parameter_function, expr_id)
        funcs['TEMPWAT_L1'] = expr, expr_id

        tl1_pmap = {'T': 'TEMPWAT_L0'}
        expr.param_map = tl1_pmap
        tempL1_ctxt = ParameterContext('TEMPWAT_L1', param_type=ParameterFunctionType(function=expr), variability=VariabilityEnum.TEMPORAL)
        tempL1_ctxt.uom = 'deg_C'
        tempL1_ctxt_id = self.dataset_management.create_parameter_context(name='test_TEMPWAT_L1', parameter_context=tempL1_ctxt.dump(), parameter_function_id=expr_id)
        self.addCleanup(self.dataset_management.delete_parameter_context, tempL1_ctxt_id)
        contexts['TEMPWAT_L1'] = tempL1_ctxt, tempL1_ctxt_id

        # CONDWAT_L1 = (CONDWAT_L0 / 100000) - 0.5
        cl1_func = '(C / 100000) - 0.5'
        expr = NumexprFunction('CONDWAT_L1', cl1_func, ['C'])
        expr_id = self.dataset_management.create_parameter_function(name='test_CONDWAT_L1', parameter_function=expr.dump())
        self.addCleanup(self.dataset_management.delete_parameter_function, expr_id)
        funcs['CONDWAT_L1'] = expr, expr_id

        cl1_pmap = {'C': 'CONDWAT_L0'}
        expr.param_map = cl1_pmap
        condL1_ctxt = ParameterContext('CONDWAT_L1', param_type=ParameterFunctionType(function=expr), variability=VariabilityEnum.TEMPORAL)
        condL1_ctxt.uom = 'S m-1'
        condL1_ctxt_id = self.dataset_management.create_parameter_context(name='test_CONDWAT_L1', parameter_context=condL1_ctxt.dump(), parameter_function_id=expr_id)
        self.addCleanup(self.dataset_management.delete_parameter_context, condL1_ctxt_id)
        contexts['CONDWAT_L1'] = condL1_ctxt, condL1_ctxt_id

        # Equation uses p_range, which is a calibration coefficient - Fixing to 679.34040721
        #   PRESWAT_L1 = (PRESWAT_L0 * p_range / (0.85 * 65536)) - (0.05 * p_range)
        pl1_func = '(P * p_range / (0.85 * 65536)) - (0.05 * p_range)'
        expr = NumexprFunction('PRESWAT_L1', pl1_func, ['P', 'p_range'])
        expr_id = self.dataset_management.create_parameter_function(name='test_PRESWAT_L1', parameter_function=expr.dump())
        self.addCleanup(self.dataset_management.delete_parameter_function, expr_id)
        funcs['PRESWAT_L1'] = expr, expr_id
        
        pl1_pmap = {'P': 'PRESWAT_L0', 'p_range': 679.34040721}
        expr.param_map = pl1_pmap
        presL1_ctxt = ParameterContext('PRESWAT_L1', param_type=ParameterFunctionType(function=expr), variability=VariabilityEnum.TEMPORAL)
        presL1_ctxt.uom = 'S m-1'
        presL1_ctxt_id = self.dataset_management.create_parameter_context(name='test_CONDWAT_L1', parameter_context=presL1_ctxt.dump(), parameter_function_id=expr_id)
        self.addCleanup(self.dataset_management.delete_parameter_context, presL1_ctxt_id)
        contexts['PRESWAT_L1'] = presL1_ctxt, presL1_ctxt_id

        # Density & practical salinity calucluated using the Gibbs Seawater library - available via python-gsw project:
        #       https://code.google.com/p/python-gsw/ & http://pypi.python.org/pypi/gsw/3.0.1

#.........这里部分代码省略.........
开发者ID:MauriceManning,项目名称:coi-services,代码行数:103,代码来源:test_granule.py

示例7: _get_pdict

# 需要导入模块: from coverage_model import ParameterContext [as 别名]
# 或者: from coverage_model.ParameterContext import axis [as 别名]
    def _get_pdict(self, filter_values):
        t_ctxt = ParameterContext("time", param_type=QuantityType(value_encoding=np.dtype("int64")))
        t_ctxt.uom = "seconds since 01-01-1900"
        t_ctxt.fill_value = -9999
        t_ctxt_id = self.dataset_management.create_parameter_context(
            name="time", parameter_context=t_ctxt.dump(), parameter_type="quantity<int64>", unit_of_measure=t_ctxt.uom
        )

        lat_ctxt = ParameterContext("lat", param_type=ConstantType(QuantityType(value_encoding=np.dtype("float32"))))
        lat_ctxt.axis = AxisTypeEnum.LAT
        lat_ctxt.uom = "degree_north"
        lat_ctxt.fill_value = -9999
        lat_ctxt_id = self.dataset_management.create_parameter_context(
            name="lat",
            parameter_context=lat_ctxt.dump(),
            parameter_type="quantity<float32>",
            unit_of_measure=lat_ctxt.uom,
        )

        lon_ctxt = ParameterContext("lon", param_type=ConstantType(QuantityType(value_encoding=np.dtype("float32"))))
        lon_ctxt.axis = AxisTypeEnum.LON
        lon_ctxt.uom = "degree_east"
        lon_ctxt.fill_value = -9999
        lon_ctxt_id = self.dataset_management.create_parameter_context(
            name="lon",
            parameter_context=lon_ctxt.dump(),
            parameter_type="quantity<float32>",
            unit_of_measure=lon_ctxt.uom,
        )

        temp_ctxt = ParameterContext("TEMPWAT_L0", param_type=QuantityType(value_encoding=np.dtype("float32")))
        temp_ctxt.uom = "deg_C"
        temp_ctxt.fill_value = -9999
        temp_ctxt_id = self.dataset_management.create_parameter_context(
            name="TEMPWAT_L0",
            parameter_context=temp_ctxt.dump(),
            parameter_type="quantity<float32>",
            unit_of_measure=temp_ctxt.uom,
        )

        # Conductivity - values expected to be the decimal results of conversion from hex
        cond_ctxt = ParameterContext("CONDWAT_L0", param_type=QuantityType(value_encoding=np.dtype("float32")))
        cond_ctxt.uom = "S m-1"
        cond_ctxt.fill_value = -9999
        cond_ctxt_id = self.dataset_management.create_parameter_context(
            name="CONDWAT_L0",
            parameter_context=cond_ctxt.dump(),
            parameter_type="quantity<float32>",
            unit_of_measure=cond_ctxt.uom,
        )

        # Pressure - values expected to be the decimal results of conversion from hex
        press_ctxt = ParameterContext("PRESWAT_L0", param_type=QuantityType(value_encoding=np.dtype("float32")))
        press_ctxt.uom = "dbar"
        press_ctxt.fill_value = -9999
        press_ctxt_id = self.dataset_management.create_parameter_context(
            name="PRESWAT_L0",
            parameter_context=press_ctxt.dump(),
            parameter_type="quantity<float32>",
            unit_of_measure=press_ctxt.uom,
        )

        # TEMPWAT_L1 = (TEMPWAT_L0 / 10000) - 10
        tl1_func = "(TEMPWAT_L0 / 10000) - 10"
        tl1_pmap = {"TEMPWAT_L0": "TEMPWAT_L0"}
        func = NumexprFunction("TEMPWAT_L1", tl1_func, tl1_pmap)
        tempL1_ctxt = ParameterContext(
            "TEMPWAT_L1", param_type=ParameterFunctionType(function=func), variability=VariabilityEnum.TEMPORAL
        )
        tempL1_ctxt.uom = "deg_C"

        tempL1_ctxt_id = self.dataset_management.create_parameter_context(
            name=tempL1_ctxt.name,
            parameter_context=tempL1_ctxt.dump(),
            parameter_type="pfunc",
            unit_of_measure=tempL1_ctxt.uom,
        )

        # CONDWAT_L1 = (CONDWAT_L0 / 100000) - 0.5
        cl1_func = "(CONDWAT_L0 / 100000) - 0.5"
        cl1_pmap = {"CONDWAT_L0": "CONDWAT_L0"}
        func = NumexprFunction("CONDWAT_L1", cl1_func, cl1_pmap)
        condL1_ctxt = ParameterContext(
            "CONDWAT_L1", param_type=ParameterFunctionType(function=func), variability=VariabilityEnum.TEMPORAL
        )
        condL1_ctxt.uom = "S m-1"
        condL1_ctxt_id = self.dataset_management.create_parameter_context(
            name=condL1_ctxt.name,
            parameter_context=condL1_ctxt.dump(),
            parameter_type="pfunc",
            unit_of_measure=condL1_ctxt.uom,
        )

        # Equation uses p_range, which is a calibration coefficient - Fixing to 679.34040721
        #   PRESWAT_L1 = (PRESWAT_L0 * p_range / (0.85 * 65536)) - (0.05 * p_range)
        pl1_func = "(PRESWAT_L0 * 679.34040721 / (0.85 * 65536)) - (0.05 * 679.34040721)"
        pl1_pmap = {"PRESWAT_L0": "PRESWAT_L0"}
        func = NumexprFunction("PRESWAT_L1", pl1_func, pl1_pmap)
        presL1_ctxt = ParameterContext(
            "PRESWAT_L1", param_type=ParameterFunctionType(function=func), variability=VariabilityEnum.TEMPORAL
#.........这里部分代码省略.........
开发者ID:blazetopher,项目名称:coi-services,代码行数:103,代码来源:test_pubsub.py

示例8: create_parsed_params

# 需要导入模块: from coverage_model import ParameterContext [as 别名]
# 或者: from coverage_model.ParameterContext import axis [as 别名]
    def create_parsed_params(self):
        
        contexts = {}
        funcs = {}
        

        t_ctxt = ParameterContext('time', param_type=QuantityType(value_encoding=np.dtype('float64')))
        t_ctxt.uom = 'seconds since 1900-01-01'
        t_ctxt_id = self.dataset_management.create_parameter_context(name='time', parameter_context=t_ctxt.dump())
        contexts['time'] = (t_ctxt, t_ctxt_id)

        lat_ctxt = ParameterContext('lat', param_type=QuantityType(value_encoding=np.dtype('float32')), fill_value=-9999)
        lat_ctxt.axis = AxisTypeEnum.LAT
        lat_ctxt.uom = 'degree_north'
        lat_ctxt_id = self.dataset_management.create_parameter_context(name='lat', parameter_context=lat_ctxt.dump())
        contexts['lat'] = lat_ctxt, lat_ctxt_id

        lon_ctxt = ParameterContext('lon', param_type=QuantityType(value_encoding=np.dtype('float32')), fill_value=-9999)
        lon_ctxt.axis = AxisTypeEnum.LON
        lon_ctxt.uom = 'degree_east'
        lon_ctxt_id = self.dataset_management.create_parameter_context(name='lon', parameter_context=lon_ctxt.dump())
        contexts['lon'] = lon_ctxt, lon_ctxt_id

        # Independent Parameters

        # Temperature - values expected to be the decimal results of conversion from hex
        temp_ctxt = ParameterContext('temp', param_type=QuantityType(value_encoding=np.dtype('float32')), fill_value=-9999)
        temp_ctxt.uom = 'deg_C'
        temp_ctxt_id = self.dataset_management.create_parameter_context(name='temp', parameter_context=temp_ctxt.dump())
        contexts['temp'] = temp_ctxt, temp_ctxt_id

        # Conductivity - values expected to be the decimal results of conversion from hex
        cond_ctxt = ParameterContext('conductivity', param_type=QuantityType(value_encoding=np.dtype('float32')), fill_value=-9999)
        cond_ctxt.uom = 'S m-1'
        cond_ctxt_id = self.dataset_management.create_parameter_context(name='conductivity', parameter_context=cond_ctxt.dump())
        contexts['conductivity'] = cond_ctxt, cond_ctxt_id

        # Pressure - values expected to be the decimal results of conversion from hex
        press_ctxt = ParameterContext('pressure', param_type=QuantityType(value_encoding=np.dtype('float32')), fill_value=-9999)
        press_ctxt.uom = 'dbar'
        press_ctxt_id = self.dataset_management.create_parameter_context(name='pressure', parameter_context=press_ctxt.dump())
        contexts['pressure'] = press_ctxt, press_ctxt_id

        preffered_ctxt = ParameterContext('preferred_timestamp', param_type=CategoryType(categories={0:'port_timestamp', 1:'driver_timestamp', 2:'internal_timestamp', 3:'time', -99:'empty'}), fill_value=-99)
        preffered_ctxt.uom = ''
        preffered_ctxt_id = self.dataset_management.create_parameter_context(name='preferred_timestamp', parameter_context=preffered_ctxt.dump())
        contexts['preferred_timestamp'] = preffered_ctxt, preffered_ctxt_id
        
        port_ctxt = ParameterContext('port_timestamp', param_type=QuantityType(value_encoding=np.dtype('float64')), fill_value=-9999)
        port_ctxt.uom = 'seconds since 1900-01-01'
        port_ctxt_id = self.dataset_management.create_parameter_context(name='port_timestamp', parameter_context=port_ctxt.dump())
        contexts['port_timestamp'] = port_ctxt, port_ctxt_id
        
        driver_ctxt = ParameterContext('driver_timestamp', param_type=QuantityType(value_encoding=np.dtype('float64')), fill_value=-9999)
        driver_ctxt.uom = 'seconds since 1900-01-01'
        driver_ctxt_id = self.dataset_management.create_parameter_context(name='driver_timestamp', parameter_context=driver_ctxt.dump())
        contexts['driver_timestamp'] = driver_ctxt, driver_ctxt_id
        
        internal_ctxt = ParameterContext('internal_timestamp', param_type=QuantityType(value_encoding=np.dtype('float64')), fill_value=-9999)
        internal_ctxt.uom = 'seconds since 1900-01-01'
        internal_ctxt_id = self.dataset_management.create_parameter_context(name='internal_timestamp', parameter_context=internal_ctxt.dump())
        contexts['internal_timestamp'] = internal_ctxt, internal_ctxt_id
        
        quality_ctxt = ParameterContext('quality_flag', param_type=ArrayType())
        quality_ctxt.uom = ''
        quality_ctxt_id = self.dataset_management.create_parameter_context(name='quality_flag', parameter_context=quality_ctxt.dump())
        contexts['quality_flag'] = quality_ctxt, quality_ctxt_id

        # Dependent Parameters

        # TEMPWAT_L1 = (TEMPWAT_L0 / 10000) - 10
        tl1_func = '(temperature / 10000.0) - 10'
        expr = NumexprFunction('temp_L1', tl1_func, ['temperature'])
        expr_id = self.dataset_management.create_parameter_function(name='temp_L1', parameter_function=expr.dump())
        self.addCleanup(self.dataset_management.delete_parameter_function, expr_id)
        funcs['temp_L1'] = expr, expr_id

        tl1_pmap = {'temperature':'temp'}
        expr.param_map = tl1_pmap
        tempL1_ctxt = ParameterContext('temp_L1', param_type=ParameterFunctionType(function=expr), variability=VariabilityEnum.TEMPORAL)
        tempL1_ctxt.uom = 'deg_C'
        tempL1_ctxt_id = self.dataset_management.create_parameter_context(name='temp_L1', parameter_context=tempL1_ctxt.dump(), parameter_function_id=expr_id)
        self.addCleanup(self.dataset_management.delete_parameter_context, tempL1_ctxt_id)
        contexts['temp_L1'] = tempL1_ctxt, tempL1_ctxt_id

        # CONDWAT_L1 = (CONDWAT_L0 / 100000) - 0.5
        cl1_func = '(conductivity / 100000.0) - 0.5'
        expr = NumexprFunction('conductivity_L1', cl1_func, ['conductivity'])
        expr_id = self.dataset_management.create_parameter_function(name='conductivity_L1', parameter_function=expr.dump())
        self.addCleanup(self.dataset_management.delete_parameter_function, expr_id)
        funcs['conductivity_L1'] = expr, expr_id

        cl1_pmap = {'conductivity':'conductivity'}
        expr.param_map = cl1_pmap
        condL1_ctxt = ParameterContext('conductivity_L1', param_type=ParameterFunctionType(function=expr), variability=VariabilityEnum.TEMPORAL)
        condL1_ctxt.uom = 'S m-1'
        condL1_ctxt_id = self.dataset_management.create_parameter_context(name='conductivity_L1', parameter_context=condL1_ctxt.dump(), parameter_function_id=expr_id)
        self.addCleanup(self.dataset_management.delete_parameter_context, condL1_ctxt_id)
        contexts['conductivity_L1'] = condL1_ctxt, condL1_ctxt_id

#.........这里部分代码省略.........
开发者ID:jamie-cyber1,项目名称:coi-services,代码行数:103,代码来源:parameter_helper.py


注:本文中的coverage_model.ParameterContext.axis方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。