当前位置: 首页>>代码示例>>Python>>正文


Python EllipticCurve.a_invariants方法代码示例

本文整理汇总了Python中constructor.EllipticCurve.a_invariants方法的典型用法代码示例。如果您正苦于以下问题:Python EllipticCurve.a_invariants方法的具体用法?Python EllipticCurve.a_invariants怎么用?Python EllipticCurve.a_invariants使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在constructor.EllipticCurve的用法示例。


在下文中一共展示了EllipticCurve.a_invariants方法的3个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: descend_to

# 需要导入模块: from constructor import EllipticCurve [as 别名]
# 或者: from constructor.EllipticCurve import a_invariants [as 别名]
    def descend_to(self, K, f=None):
        r"""
        Given a subfield `K` and an elliptic curve self defined over a field `L`,
        this function determines whether there exists an elliptic curve over `K`
        which is isomorphic over `L` to self. If one exists, it finds it.

        INPUT:

        - `K` -- a subfield of the base field of self.
        - `f` -- an embedding of `K` into the base field of self.

        OUTPUT:

        Either an elliptic curve defined over `K` which is isomorphic to self
        or None if no such curve exists.

        .. NOTE::

            This only works over number fields and QQ.

        EXAMPLES::

            sage: E = EllipticCurve([1,2,3,4,5])
            sage: E.descend_to(ZZ)
            Traceback (most recent call last):
            ...
            TypeError: Input must be a field.

        ::

            sage: F.<b> = QuadraticField(23)
            sage: G.<a> = F.extension(x^3+5)
            sage: E = EllipticCurve(j=1728*b).change_ring(G)
            sage: E.descend_to(F)
            Elliptic Curve defined by y^2 = x^3 + (8957952*b-206032896)*x + (-247669456896*b+474699792384) over Number Field in b with defining polynomial x^2 - 23

        ::

            sage: L.<a> = NumberField(x^4 - 7)
            sage: K.<b> = NumberField(x^2 - 7)
            sage: E = EllipticCurve([a^6,0])
            sage: E.descend_to(K)
            Elliptic Curve defined by y^2 = x^3 + 1296/49*b*x over Number Field in b with defining polynomial x^2 - 7

        ::

            sage: K.<a> = QuadraticField(17)
            sage: E = EllipticCurve(j = 2*a)
            sage: print E.descend_to(QQ)
            None
        """
        if not K.is_field():
            raise TypeError, "Input must be a field."
        if self.base_field()==K:
            return self
        j = self.j_invariant()
        from sage.rings.all import QQ
        if K == QQ:
            f = QQ.embeddings(self.base_field())[0]
            if j in QQ:
                jbase = QQ(j)
            else:
                return None
        elif f == None:
            embeddings = K.embeddings(self.base_field())
            if len(embeddings) == 0:
                raise TypeError, "Input must be a subfield of the base field of the curve."
            for g in embeddings:
                try:
                    jbase = g.preimage(j)
                    f = g
                    break
                except StandardError:
                    pass
            if f == None:
                return None
        else:
            try:
                jbase = f.preimage(j)
            except StandardError:
                return None
        E = EllipticCurve(j=jbase)
        E2 = EllipticCurve(self.base_field(), [f(a) for a in E.a_invariants()])
        if jbase==0:
            d = self.is_sextic_twist(E2)
            if d == 1:
                return E
            if d == 0:
                return None
            Etwist = E2.sextic_twist(d)
        elif jbase==1728:
            d = self.is_quartic_twist(E2)
            if d == 1:
                return E
            if d == 0:
                return None
            Etwist = E2.quartic_twist(d)
        else:
            d = self.is_quadratic_twist(E2)
            if d == 1:
#.........这里部分代码省略.........
开发者ID:CETHop,项目名称:sage,代码行数:103,代码来源:ell_field.py

示例2: _tate

# 需要导入模块: from constructor import EllipticCurve [as 别名]
# 或者: from constructor.EllipticCurve import a_invariants [as 别名]

#.........这里部分代码省略.........
                _tmp_ = pushout(F.p.ring().maximal_order(),K)
            pinv = lambda x: F.lift(~F(x))
            proot = lambda x,e: F.lift(F(x).nth_root(e, extend = False, all = True)[0])
            preduce = lambda x: F.lift(F(x))
        except CoercionException: # the pushout does not exist, we need conversion
            pinv = lambda x: K(F.lift(~F(x)))
            proot = lambda x,e: K(F.lift(F(x).nth_root(e, extend = False, all = True)[0]))
            preduce = lambda x: K(F.lift(F(x)))

        def _pquadroots(a, b, c):
            r"""
            Local function returning True iff `ax^2 + bx + c` has roots modulo `P`
            """
            (a, b, c) = (F(a), F(b), F(c))
            if a == 0:
                return (b != 0) or (c == 0)
            elif p == 2:
                return len(PolynomialRing(F, "x")([c,b,a]).roots()) > 0
            else:
                return (b**2 - 4*a*c).is_square()
        def _pcubicroots(b, c, d):
            r"""
            Local function returning the number of roots of `x^3 +
            b*x^2 + c*x + d` modulo `P`, counting multiplicities
            """

            return sum([rr[1] for rr in PolynomialRing(F, 'x')([F(d), F(c), F(b), F(1)]).roots()],0)

        if p == 2:
            halfmodp = OK(Integer(0))
        else:
            halfmodp = pinv(Integer(2))

        A = E.a_invariants()
        A = [0, A[0], A[1], A[2], A[3], 0, A[4]]
        indices = [1,2,3,4,6]
        if min([pval(a) for a in A if a != 0]) < 0:
            verbose("Non-integral model at P: valuations are %s; making integral"%([pval(a) for a in A if a != 0]), t, 1)
            e = 0
            for i in range(7):
                if A[i] != 0:
                    e = max(e, (-pval(A[i])/i).ceil())
            pie = pi**e
            for i in range(7):
                if A[i] != 0:
                    A[i] *= pie**i
            verbose("P-integral model is %s, with valuations %s"%([A[i] for i in indices], [pval(A[i]) for i in indices]), t, 1)

        split = None # only relevant for multiplicative reduction

        (a1, a2, a3, a4, a6) = (A[1], A[2], A[3], A[4], A[6])
        while True:
            C = EllipticCurve([a1, a2, a3, a4, a6]);
            (b2, b4, b6, b8) = C.b_invariants()
            (c4, c6) = C.c_invariants()
            delta = C.discriminant()
            val_disc = pval(delta)

            if val_disc == 0:
                ## Good reduction already
                cp = 1
                fp = 0
                KS = KodairaSymbol("I0")
                break #return

            # Otherwise, we change coordinates so that p | a3, a4, a6
开发者ID:amitjamadagni,项目名称:sage,代码行数:70,代码来源:ell_local_data.py

示例3: __init__

# 需要导入模块: from constructor import EllipticCurve [as 别名]
# 或者: from constructor.EllipticCurve import a_invariants [as 别名]
    def __init__(self, E=None, urst=None, F=None):
        r"""
        Constructor for WeierstrassIsomorphism class,

        INPUT:

        - ``E`` -- an EllipticCurve, or None (see below).

        - ``urst`` -- a 4-tuple `(u,r,s,t)`, or None (see below).

        - ``F`` -- an EllipticCurve, or None (see below).

        Given two Elliptic Curves ``E`` and ``F`` (represented by
        Weierstrass models as usual), and a transformation ``urst``
        from ``E`` to ``F``, construct an isomorphism from ``E`` to
        ``F``.  An exception is raised if ``urst(E)!=F``.  At most one
        of ``E``, ``F``, ``urst`` can be None.  If ``F==None`` then
        ``F`` is constructed as ``urst(E)``.  If ``E==None`` then
        ``E`` is constructed as ``urst^-1(F)``.  If ``urst==None``
        then an isomorphism from ``E`` to ``F`` is constructed if
        possible, and an exception is raised if they are not
        isomorphic.  Otherwise ``urst`` can be a tuple of length 4 or
        a object of type ``baseWI``.

        Users will not usually need to use this class directly, but instead use
        methods such as ``isomorphism`` of elliptic curves.

        EXAMPLES::

            sage: from sage.schemes.elliptic_curves.weierstrass_morphism import *
            sage: WeierstrassIsomorphism(EllipticCurve([0,1,2,3,4]),(-1,2,3,4))
            Generic morphism:
            From: Abelian group of points on Elliptic Curve defined by y^2 + 2*y = x^3 + x^2 + 3*x + 4 over Rational Field
            To:   Abelian group of points on Elliptic Curve defined by y^2 - 6*x*y - 10*y = x^3 - 2*x^2 - 11*x - 2 over Rational Field
            Via:  (u,r,s,t) = (-1, 2, 3, 4)
            sage: E=EllipticCurve([0,1,2,3,4])
            sage: F=EllipticCurve(E.cremona_label())
            sage: WeierstrassIsomorphism(E,None,F)
            Generic morphism:
            From: Abelian group of points on Elliptic Curve defined by y^2 + 2*y = x^3 + x^2 + 3*x + 4 over Rational Field
            To:   Abelian group of points on Elliptic Curve defined by y^2  = x^3 + x^2 + 3*x + 5 over Rational Field
            Via:  (u,r,s,t) = (1, 0, 0, -1)
            sage: w=WeierstrassIsomorphism(None,(1,0,0,-1),F)
            sage: w._domain_curve==E
            True
        """
        from ell_generic import is_EllipticCurve

        if E!=None:
            if not is_EllipticCurve(E):
                raise ValueError("First argument must be an elliptic curve or None")
        if F!=None:
            if not is_EllipticCurve(F):
                raise ValueError("Third argument must be an elliptic curve or None")
        if urst!=None:
            if len(urst)!=4:
                raise ValueError("Second argument must be [u,r,s,t] or None")
        if len([par for par in [E,urst,F] if par!=None])<2:
            raise ValueError("At most 1 argument can be None")

        if F==None:  # easy case
            baseWI.__init__(self,*urst)
            F=EllipticCurve(baseWI.__call__(self,list(E.a_invariants())))
            Morphism.__init__(self, Hom(E(0).parent(), F(0).parent()))
            self._domain_curve = E
            self._codomain_curve = F
            return

        if E==None:  # easy case in reverse
            baseWI.__init__(self,*urst)
            inv_urst=baseWI.__invert__(self)
            E=EllipticCurve(baseWI.__call__(inv_urst,list(F.a_invariants())))
            Morphism.__init__(self, Hom(E(0).parent(), F(0).parent()))
            self._domain_curve = E
            self._codomain_curve = F
            return

        if urst==None: # try to construct the morphism
            urst=isomorphisms(E,F,True)
            if urst==None:
                raise ValueError("Elliptic curves not isomorphic.")
            baseWI.__init__(self, *urst)
            Morphism.__init__(self, Hom(E(0).parent(), F(0).parent()))
            self._domain_curve = E
            self._codomain_curve = F
            return


        # none of the parameters is None:
        baseWI.__init__(self,*urst)
        if F!=EllipticCurve(baseWI.__call__(self,list(E.a_invariants()))):
            raise ValueError("second argument is not an isomorphism from first argument to third argument")
        else:
            Morphism.__init__(self, Hom(E(0).parent(), F(0).parent()))
            self._domain_curve = E
            self._codomain_curve = F
        return
开发者ID:amitjamadagni,项目名称:sage,代码行数:99,代码来源:weierstrass_morphism.py


注:本文中的constructor.EllipticCurve.a_invariants方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。