本文整理汇总了Python中constructor.EllipticCurve.a_invariants方法的典型用法代码示例。如果您正苦于以下问题:Python EllipticCurve.a_invariants方法的具体用法?Python EllipticCurve.a_invariants怎么用?Python EllipticCurve.a_invariants使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类constructor.EllipticCurve
的用法示例。
在下文中一共展示了EllipticCurve.a_invariants方法的3个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: descend_to
# 需要导入模块: from constructor import EllipticCurve [as 别名]
# 或者: from constructor.EllipticCurve import a_invariants [as 别名]
def descend_to(self, K, f=None):
r"""
Given a subfield `K` and an elliptic curve self defined over a field `L`,
this function determines whether there exists an elliptic curve over `K`
which is isomorphic over `L` to self. If one exists, it finds it.
INPUT:
- `K` -- a subfield of the base field of self.
- `f` -- an embedding of `K` into the base field of self.
OUTPUT:
Either an elliptic curve defined over `K` which is isomorphic to self
or None if no such curve exists.
.. NOTE::
This only works over number fields and QQ.
EXAMPLES::
sage: E = EllipticCurve([1,2,3,4,5])
sage: E.descend_to(ZZ)
Traceback (most recent call last):
...
TypeError: Input must be a field.
::
sage: F.<b> = QuadraticField(23)
sage: G.<a> = F.extension(x^3+5)
sage: E = EllipticCurve(j=1728*b).change_ring(G)
sage: E.descend_to(F)
Elliptic Curve defined by y^2 = x^3 + (8957952*b-206032896)*x + (-247669456896*b+474699792384) over Number Field in b with defining polynomial x^2 - 23
::
sage: L.<a> = NumberField(x^4 - 7)
sage: K.<b> = NumberField(x^2 - 7)
sage: E = EllipticCurve([a^6,0])
sage: E.descend_to(K)
Elliptic Curve defined by y^2 = x^3 + 1296/49*b*x over Number Field in b with defining polynomial x^2 - 7
::
sage: K.<a> = QuadraticField(17)
sage: E = EllipticCurve(j = 2*a)
sage: print E.descend_to(QQ)
None
"""
if not K.is_field():
raise TypeError, "Input must be a field."
if self.base_field()==K:
return self
j = self.j_invariant()
from sage.rings.all import QQ
if K == QQ:
f = QQ.embeddings(self.base_field())[0]
if j in QQ:
jbase = QQ(j)
else:
return None
elif f == None:
embeddings = K.embeddings(self.base_field())
if len(embeddings) == 0:
raise TypeError, "Input must be a subfield of the base field of the curve."
for g in embeddings:
try:
jbase = g.preimage(j)
f = g
break
except StandardError:
pass
if f == None:
return None
else:
try:
jbase = f.preimage(j)
except StandardError:
return None
E = EllipticCurve(j=jbase)
E2 = EllipticCurve(self.base_field(), [f(a) for a in E.a_invariants()])
if jbase==0:
d = self.is_sextic_twist(E2)
if d == 1:
return E
if d == 0:
return None
Etwist = E2.sextic_twist(d)
elif jbase==1728:
d = self.is_quartic_twist(E2)
if d == 1:
return E
if d == 0:
return None
Etwist = E2.quartic_twist(d)
else:
d = self.is_quadratic_twist(E2)
if d == 1:
#.........这里部分代码省略.........
示例2: _tate
# 需要导入模块: from constructor import EllipticCurve [as 别名]
# 或者: from constructor.EllipticCurve import a_invariants [as 别名]
#.........这里部分代码省略.........
_tmp_ = pushout(F.p.ring().maximal_order(),K)
pinv = lambda x: F.lift(~F(x))
proot = lambda x,e: F.lift(F(x).nth_root(e, extend = False, all = True)[0])
preduce = lambda x: F.lift(F(x))
except CoercionException: # the pushout does not exist, we need conversion
pinv = lambda x: K(F.lift(~F(x)))
proot = lambda x,e: K(F.lift(F(x).nth_root(e, extend = False, all = True)[0]))
preduce = lambda x: K(F.lift(F(x)))
def _pquadroots(a, b, c):
r"""
Local function returning True iff `ax^2 + bx + c` has roots modulo `P`
"""
(a, b, c) = (F(a), F(b), F(c))
if a == 0:
return (b != 0) or (c == 0)
elif p == 2:
return len(PolynomialRing(F, "x")([c,b,a]).roots()) > 0
else:
return (b**2 - 4*a*c).is_square()
def _pcubicroots(b, c, d):
r"""
Local function returning the number of roots of `x^3 +
b*x^2 + c*x + d` modulo `P`, counting multiplicities
"""
return sum([rr[1] for rr in PolynomialRing(F, 'x')([F(d), F(c), F(b), F(1)]).roots()],0)
if p == 2:
halfmodp = OK(Integer(0))
else:
halfmodp = pinv(Integer(2))
A = E.a_invariants()
A = [0, A[0], A[1], A[2], A[3], 0, A[4]]
indices = [1,2,3,4,6]
if min([pval(a) for a in A if a != 0]) < 0:
verbose("Non-integral model at P: valuations are %s; making integral"%([pval(a) for a in A if a != 0]), t, 1)
e = 0
for i in range(7):
if A[i] != 0:
e = max(e, (-pval(A[i])/i).ceil())
pie = pi**e
for i in range(7):
if A[i] != 0:
A[i] *= pie**i
verbose("P-integral model is %s, with valuations %s"%([A[i] for i in indices], [pval(A[i]) for i in indices]), t, 1)
split = None # only relevant for multiplicative reduction
(a1, a2, a3, a4, a6) = (A[1], A[2], A[3], A[4], A[6])
while True:
C = EllipticCurve([a1, a2, a3, a4, a6]);
(b2, b4, b6, b8) = C.b_invariants()
(c4, c6) = C.c_invariants()
delta = C.discriminant()
val_disc = pval(delta)
if val_disc == 0:
## Good reduction already
cp = 1
fp = 0
KS = KodairaSymbol("I0")
break #return
# Otherwise, we change coordinates so that p | a3, a4, a6
示例3: __init__
# 需要导入模块: from constructor import EllipticCurve [as 别名]
# 或者: from constructor.EllipticCurve import a_invariants [as 别名]
def __init__(self, E=None, urst=None, F=None):
r"""
Constructor for WeierstrassIsomorphism class,
INPUT:
- ``E`` -- an EllipticCurve, or None (see below).
- ``urst`` -- a 4-tuple `(u,r,s,t)`, or None (see below).
- ``F`` -- an EllipticCurve, or None (see below).
Given two Elliptic Curves ``E`` and ``F`` (represented by
Weierstrass models as usual), and a transformation ``urst``
from ``E`` to ``F``, construct an isomorphism from ``E`` to
``F``. An exception is raised if ``urst(E)!=F``. At most one
of ``E``, ``F``, ``urst`` can be None. If ``F==None`` then
``F`` is constructed as ``urst(E)``. If ``E==None`` then
``E`` is constructed as ``urst^-1(F)``. If ``urst==None``
then an isomorphism from ``E`` to ``F`` is constructed if
possible, and an exception is raised if they are not
isomorphic. Otherwise ``urst`` can be a tuple of length 4 or
a object of type ``baseWI``.
Users will not usually need to use this class directly, but instead use
methods such as ``isomorphism`` of elliptic curves.
EXAMPLES::
sage: from sage.schemes.elliptic_curves.weierstrass_morphism import *
sage: WeierstrassIsomorphism(EllipticCurve([0,1,2,3,4]),(-1,2,3,4))
Generic morphism:
From: Abelian group of points on Elliptic Curve defined by y^2 + 2*y = x^3 + x^2 + 3*x + 4 over Rational Field
To: Abelian group of points on Elliptic Curve defined by y^2 - 6*x*y - 10*y = x^3 - 2*x^2 - 11*x - 2 over Rational Field
Via: (u,r,s,t) = (-1, 2, 3, 4)
sage: E=EllipticCurve([0,1,2,3,4])
sage: F=EllipticCurve(E.cremona_label())
sage: WeierstrassIsomorphism(E,None,F)
Generic morphism:
From: Abelian group of points on Elliptic Curve defined by y^2 + 2*y = x^3 + x^2 + 3*x + 4 over Rational Field
To: Abelian group of points on Elliptic Curve defined by y^2 = x^3 + x^2 + 3*x + 5 over Rational Field
Via: (u,r,s,t) = (1, 0, 0, -1)
sage: w=WeierstrassIsomorphism(None,(1,0,0,-1),F)
sage: w._domain_curve==E
True
"""
from ell_generic import is_EllipticCurve
if E!=None:
if not is_EllipticCurve(E):
raise ValueError("First argument must be an elliptic curve or None")
if F!=None:
if not is_EllipticCurve(F):
raise ValueError("Third argument must be an elliptic curve or None")
if urst!=None:
if len(urst)!=4:
raise ValueError("Second argument must be [u,r,s,t] or None")
if len([par for par in [E,urst,F] if par!=None])<2:
raise ValueError("At most 1 argument can be None")
if F==None: # easy case
baseWI.__init__(self,*urst)
F=EllipticCurve(baseWI.__call__(self,list(E.a_invariants())))
Morphism.__init__(self, Hom(E(0).parent(), F(0).parent()))
self._domain_curve = E
self._codomain_curve = F
return
if E==None: # easy case in reverse
baseWI.__init__(self,*urst)
inv_urst=baseWI.__invert__(self)
E=EllipticCurve(baseWI.__call__(inv_urst,list(F.a_invariants())))
Morphism.__init__(self, Hom(E(0).parent(), F(0).parent()))
self._domain_curve = E
self._codomain_curve = F
return
if urst==None: # try to construct the morphism
urst=isomorphisms(E,F,True)
if urst==None:
raise ValueError("Elliptic curves not isomorphic.")
baseWI.__init__(self, *urst)
Morphism.__init__(self, Hom(E(0).parent(), F(0).parent()))
self._domain_curve = E
self._codomain_curve = F
return
# none of the parameters is None:
baseWI.__init__(self,*urst)
if F!=EllipticCurve(baseWI.__call__(self,list(E.a_invariants()))):
raise ValueError("second argument is not an isomorphism from first argument to third argument")
else:
Morphism.__init__(self, Hom(E(0).parent(), F(0).parent()))
self._domain_curve = E
self._codomain_curve = F
return