当前位置: 首页>>代码示例>>Python>>正文


Python Space.export方法代码示例

本文整理汇总了Python中composes.semantic_space.space.Space.export方法的典型用法代码示例。如果您正苦于以下问题:Python Space.export方法的具体用法?Python Space.export怎么用?Python Space.export使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在composes.semantic_space.space.Space的用法示例。


在下文中一共展示了Space.export方法的1个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: LexicalFunction

# 需要导入模块: from composes.semantic_space.space import Space [as 别名]
# 或者: from composes.semantic_space.space.Space import export [as 别名]

#.........这里部分代码省略.........
        composed_vec_list = []
        for i in xrange(len(arg1_list)):
            arg1_vec = self._function_space.get_row(arg1_list[i])
            arg2_vec = arg_space.get_row(arg2_list[i])
        
            matrix_type = get_type_of_largest([arg1_vec, arg2_vec])
            [arg1_vec, arg2_vec] = resolve_type_conflict([arg1_vec, arg2_vec],
                                                              matrix_type)
                
            composed_ph_vec = self._compose(arg1_vec, arg2_vec,
                                            self._function_space.element_shape)

            composed_vec_list.append(composed_ph_vec)
        
        result_element_shape = self._function_space.element_shape[0:-1]
        composed_ph_mat = composed_ph_vec.nary_vstack(composed_vec_list)
        
        log.print_name(logger, self, 1, "\nComposed with composition model:")
        log.print_info(logger, 3, "Composed total data points:%s" % len(arg1_list))
        log.print_info(logger, 3, "Functional shape of the resulted (composed) elements:%s" 
                       % (result_element_shape,))
        log.print_matrix_info(logger, composed_ph_mat, 4, 
                              "Resulted (composed) semantic space:")
        log.print_time_info(logger, time.time(), start, 2)
        
        return Space(composed_ph_mat, phrase_list, self.composed_id2column, 
                     element_shape = result_element_shape)
    
        
    def _compose(self, function_arg_vec, arg_vec, function_arg_element_shape):

        new_shape = (np.prod(function_arg_element_shape[0:-1]), 
                            function_arg_element_shape[-1])

        function_arg_vec.reshape(new_shape)

        if self._has_intercept:
            comp_el = function_arg_vec * padd_matrix(arg_vec.transpose(), 0)
        else:
            comp_el = function_arg_vec * arg_vec.transpose()
            
        return comp_el.transpose()
            
    @classmethod
    def _assert_space_match(cls, arg1_space, arg2_space, phrase_space=None):
        pass
 
    def set_regression_learner(self, regression_learner):
        assert_is_instance(regression_learner, RegressionLearner)
        self._regression_learner = regression_learner
        
    def get_regression_learner(self):
        return self._regression_learner
    
    regression_learner = property(get_regression_learner, set_regression_learner)  
    """
    Regression method to be used in training, of type RegressionLearner.
    Default is RidgeRegressionLearner(param=1).
    """
       
    def get_function_space(self):
        return self._function_space
    
    function_space = property(get_function_space)
    """
    Function space parameter, containing the lexical functions, of type Space. 
    Can be set through training or through initialization, default None.
    """        

    def get_has_intercept(self):
        return self._has_intercept
    
    has_intercept = property(get_has_intercept)
    """
    Has intercept parameter, boolean. If True, then the function_space is 
    assumed to contain intercept. Can be set through training or through 
    initialization, default is assumed to be False.
    """   
    
    def set_min_samples(self, min_samples):
        if not is_integer(min_samples):
            raise ValueError("expected %s min_samples value, received %s"
                             % ("integer", type(min_samples)))
        self._MIN_SAMPLES = min_samples
        
    def get_min_samples(self):
        return self._MIN_SAMPLES
    
    MIN_SAMPLES = property(get_min_samples, set_min_samples)
    """
    Minimal number of samples for each training instance. Default 3.
    """
            
    def _export(self, filename):
        if self._function_space is None:
            raise IllegalStateError("cannot export an untrained LexicalFunction model.")
        self._function_space.export(filename, format="dm")
            
        
            
开发者ID:georgiana-dinu,项目名称:dissect,代码行数:101,代码来源:lexical_function.py


注:本文中的composes.semantic_space.space.Space.export方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。