本文整理汇总了Python中common.Logger.debug方法的典型用法代码示例。如果您正苦于以下问题:Python Logger.debug方法的具体用法?Python Logger.debug怎么用?Python Logger.debug使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类common.Logger
的用法示例。
在下文中一共展示了Logger.debug方法的1个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: AthenaOpt
# 需要导入模块: from common import Logger [as 别名]
# 或者: from common.Logger import debug [as 别名]
#.........这里部分代码省略.........
self._logger.info('Athena optimization run started')
# Load the model
if self._configuration.get_model() == 'ZDT1':
model = ZDT1()
self._logger.info('Model ZDT1 selected')
elif self._configuration.get_model() == 'ZDT2':
model = ZDT2()
self._logger.info('Model ZDT2 selected')
elif self._configuration.get_model() == 'ZDT3':
model = ZDT3()
self._logger.info('Model ZDT3 selected')
elif self._configuration.get_model() == 'ZDT4':
model = ZDT4()
self._logger.info('Model ZDT4 selected')
elif self._configuration.get_model() == 'ZDT6':
model = ZDT6()
self._logger.info('Model ZDT6 selected')
elif self._configuration.get_model() == 'DTLZ1':
model = DTLZ1()
self._logger.info('Model DTLZ1 selected')
elif self._configuration.get_model() == 'DTLZ2':
model = DTLZ2()
self._logger.info('Model DTLZ2 selected')
elif self._configuration.get_model() == 'DTLZ3':
model = DTLZ3()
self._logger.info('Model DTLZ3 selected')
elif self._configuration.get_model() == 'TNK':
model = TNK()
self._logger.info('Model TNK selected')
elif self._configuration.get_model() == 'PACKING':
model = PACKING()
self._logger.info('Model PACKING selected')
elif self._configuration.get_model() == 'POLONI':
model = POLONI()
self._logger.info('Model POLONI selected')
else:
self._logger.error('Unable to determine model ' + self._configuration.get_model())
raise AthenaException('Unable to determine model ' + self._configuration.get_model())
# Load the algorithm
if self._configuration.get_algorithm() == 'SERIAL':
algorithm = Serial()
self._logger.info('Algorithm SERIAL selected')
elif self._configuration.get_algorithm() == 'ISLANDS':
algorithm = Islands()
self._logger.info('Algorithm ISLANDS selected')
elif self._configuration.get_algorithm() == 'SPHERES':
algorithm = Spheres()
self._logger.info('Algorithm SPHERES selected')
else:
self._logger.error('Unable to determine algorithm ' + self._configuration.get_algorithm())
raise AthenaException('Unable to determine algorithm ' + self._configuration.get_algorithm())
# Run the optimization
self._logger.debug('Setting the logger to the algorithm')
algorithm.set_logger(self._logger)
self._logger.debug('Setting the model to the algorithm')
algorithm.set_model(model)
self._logger.info('Starting the algorithm')
algorithm.parse_configuration(configuration)
history, convergence, solution = algorithm.run()
json_convergence = json.dumps(convergence, default=encode_convergence_metrics, sort_keys=True, indent=2)
if configuration.get_write_history():
json_history = history.to_json()
with open(self._directory + '/generations.out', 'w+') as data_file:
data_file.write(json_history)
if configuration.get_write_solution():
json_solution = json.dumps(solution, default=encode_individual, sort_keys=True, indent=2)
with open(self._directory + '/solution.out', 'w+') as soln_file:
soln_file.write(json_solution)
with open(self._directory + '/convergence.out', 'w+') as convergence_file:
convergence_file.write(json_convergence)
with open(self._directory + '/configuration.config', 'w+') as config_file:
config_file.write(configuration.to_json())
self._logger.info('Optimization finished')
return history