本文整理汇总了Python中cle.cle.models.Model.set_updates方法的典型用法代码示例。如果您正苦于以下问题:Python Model.set_updates方法的具体用法?Python Model.set_updates怎么用?Python Model.set_updates使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类cle.cle.models.Model
的用法示例。
在下文中一共展示了Model.set_updates方法的4个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: NllMulInd
# 需要导入模块: from cle.cle.models import Model [as 别名]
# 或者: from cle.cle.models.Model import set_updates [as 别名]
ts, _, _ = y.shape
post_scan_shape = ((ts*batch_size, -1))
h1_in = h1_temp.reshape(post_scan_shape)
h2_in = h2_temp.reshape(post_scan_shape)
h3_in = h3_temp.reshape(post_scan_shape)
y_hat_in = output.fprop([h1_in, h2_in, h3_in])
cost = NllMulInd(y.flatten(), y_hat_in)
cost = cost.mean()
cost.name = 'cost'
model.inputs = [x, y]
model._params = params
model.nodes = nodes
model.set_updates(update_list)
optimizer = Adam(
lr=0.001
)
extension = [
GradientClipping(batch_size=batch_size),
EpochCount(100),
Monitoring(freq=100,
ddout=[cost]),
Picklize(freq=100, path=save_path)
]
mainloop = Training(
name='toy_enwiki_gflstm',
示例2: Adam
# 需要导入模块: from cle.cle.models import Model [as 别名]
# 或者: from cle.cle.models.Model import set_updates [as 别名]
mean_theta_sig.name = 'mean_theta_sig'
min_theta_sig.name = 'min_theta_sig'
coeff_max = m_coeff_in.max()
coeff_min = m_coeff_in.min()
coeff_mean_max = m_coeff_in.mean(axis=0).max()
coeff_mean_min = m_coeff_in.mean(axis=0).min()
coeff_max.name = 'coeff_max'
coeff_min.name = 'coeff_min'
coeff_mean_max.name = 'coeff_mean_max'
coeff_mean_min.name = 'coeff_mean_min'
model.inputs = [x]
model.params = params
model.nodes = nodes
model.set_updates(shared_updates)
optimizer = Adam(
lr=lr
)
monitor_fn = theano.function(inputs=[m_x],
outputs=[m_recon_term,
max_theta_sig, mean_theta_sig, min_theta_sig,
max_x, mean_x, min_x,
max_theta_mu, mean_theta_mu, min_theta_mu,
coeff_max, coeff_min, coeff_mean_max, coeff_mean_min],
on_unused_input='ignore')
extension = [
GradientClipping(batch_size=batch_size, check_nan=1),
示例3: main
# 需要导入模块: from cle.cle.models import Model [as 别名]
# 或者: from cle.cle.models.Model import set_updates [as 别名]
#.........这里部分代码省略.........
m_theta_sig_temp = theta_sig.fprop([m_theta_4_temp], params)
m_coeff_temp = coeff.fprop([m_theta_4_temp], params)
m_kl_temp = KLGaussianGaussian(m_phi_mu_temp, m_phi_sig_temp, m_prior_mu_temp, m_prior_sig_temp)
m_x_shape = m_x.shape
m_x_in = m_x.reshape((m_x_shape[0]*m_x_shape[1], -1))
m_theta_mu_in = m_theta_mu_temp.reshape((m_x_shape[0]*m_x_shape[1], -1))
m_theta_sig_in = m_theta_sig_temp.reshape((m_x_shape[0]*m_x_shape[1], -1))
m_coeff_in = m_coeff_temp.reshape((m_x_shape[0]*m_x_shape[1], -1))
m_recon = GMM(m_x_in, m_theta_mu_in, m_theta_sig_in, m_coeff_in)
m_recon_term = m_recon.mean()
m_kl_term = m_kl_temp.mean()
m_nll_upper_bound = m_recon_term + m_kl_term
m_nll_upper_bound.name = 'nll_upper_bound'
m_recon_term.name = 'recon_term'
m_kl_term.name = 'kl_term'
max_x = m_x.max()
mean_x = m_x.mean()
min_x = m_x.min()
max_x.name = 'max_x'
mean_x.name = 'mean_x'
min_x.name = 'min_x'
max_theta_mu = m_theta_mu_in.max()
mean_theta_mu = m_theta_mu_in.mean()
min_theta_mu = m_theta_mu_in.min()
max_theta_mu.name = 'max_theta_mu'
mean_theta_mu.name = 'mean_theta_mu'
min_theta_mu.name = 'min_theta_mu'
max_theta_sig = m_theta_sig_in.max()
mean_theta_sig = m_theta_sig_in.mean()
min_theta_sig = m_theta_sig_in.min()
max_theta_sig.name = 'max_theta_sig'
mean_theta_sig.name = 'mean_theta_sig'
min_theta_sig.name = 'min_theta_sig'
max_phi_sig = m_phi_sig_temp.max()
mean_phi_sig = m_phi_sig_temp.mean()
min_phi_sig = m_phi_sig_temp.min()
max_phi_sig.name = 'max_phi_sig'
mean_phi_sig.name = 'mean_phi_sig'
min_phi_sig.name = 'min_phi_sig'
max_prior_sig = m_prior_sig_temp.max()
mean_prior_sig = m_prior_sig_temp.mean()
min_prior_sig = m_prior_sig_temp.min()
max_prior_sig.name = 'max_prior_sig'
mean_prior_sig.name = 'mean_prior_sig'
min_prior_sig.name = 'min_prior_sig'
model.inputs = [x]
model.params = params
model.nodes = nodes
model.set_updates(shared_updates)
optimizer = Adam(
lr=lr
)
monitor_fn = theano.function(inputs=[m_x],
outputs=[m_nll_upper_bound, m_recon_term, m_kl_term,
max_phi_sig, mean_phi_sig, min_phi_sig,
max_prior_sig, mean_prior_sig, min_prior_sig,
max_theta_sig, mean_theta_sig, min_theta_sig,
max_x, mean_x, min_x,
max_theta_mu, mean_theta_mu, min_theta_mu],
on_unused_input='ignore')
extension = [
GradientClipping(batch_size=batch_size, check_nan=1),
EpochCount(epoch),
Monitoring(freq=monitoring_freq,
monitor_fn=monitor_fn,
ddout=[m_nll_upper_bound, m_recon_term, m_kl_term,
max_phi_sig, mean_phi_sig, min_phi_sig,
max_prior_sig, mean_prior_sig, min_prior_sig,
max_theta_sig, mean_theta_sig, min_theta_sig,
max_x, mean_x, min_x,
max_theta_mu, mean_theta_mu, min_theta_mu],
data=[Iterator(train_data, m_batch_size, start=0, end=112640),
Iterator(valid_data, m_batch_size, start=2040064, end=2152704)]),
Picklize(freq=monitoring_freq, force_save_freq=force_saving_freq, path=save_path),
EarlyStopping(freq=monitoring_freq, force_save_freq=force_saving_freq, path=save_path, channel=channel_name),
WeightNorm()
]
mainloop = Training(
name=pkl_name,
data=Iterator(train_data, batch_size, start=0, end=2040064),
model=model,
optimizer=optimizer,
cost=nll_upper_bound,
outputs=[nll_upper_bound],
extension=extension
)
mainloop.run()
示例4: main
# 需要导入模块: from cle.cle.models import Model [as 别名]
# 或者: from cle.cle.models.Model import set_updates [as 别名]
#.........这里部分代码省略.........
min_x.name = "min_x"
max_theta_mu = m_theta_mu_temp.max()
mean_theta_mu = m_theta_mu_temp.mean()
min_theta_mu = m_theta_mu_temp.min()
max_theta_mu.name = "max_theta_mu"
mean_theta_mu.name = "mean_theta_mu"
min_theta_mu.name = "min_theta_mu"
max_theta_sig = m_theta_sig_temp.max()
mean_theta_sig = m_theta_sig_temp.mean()
min_theta_sig = m_theta_sig_temp.min()
max_theta_sig.name = "max_theta_sig"
mean_theta_sig.name = "mean_theta_sig"
min_theta_sig.name = "min_theta_sig"
max_phi_sig = m_phi_sig_temp.max()
mean_phi_sig = m_phi_sig_temp.mean()
min_phi_sig = m_phi_sig_temp.min()
max_phi_sig.name = "max_phi_sig"
mean_phi_sig.name = "mean_phi_sig"
min_phi_sig.name = "min_phi_sig"
max_prior_sig = m_prior_sig_temp.max()
mean_prior_sig = m_prior_sig_temp.mean()
min_prior_sig = m_prior_sig_temp.min()
max_prior_sig.name = "max_prior_sig"
mean_prior_sig.name = "mean_prior_sig"
min_prior_sig.name = "min_prior_sig"
model.inputs = [x]
model.params = params
model.nodes = nodes
model.set_updates(shared_updates)
optimizer = Adam(lr=lr)
monitor_fn = theano.function(
inputs=[m_x],
outputs=[
m_nll_upper_bound,
m_recon_term,
m_kl_term,
max_phi_sig,
mean_phi_sig,
min_phi_sig,
max_prior_sig,
mean_prior_sig,
min_prior_sig,
max_theta_sig,
mean_theta_sig,
min_theta_sig,
max_x,
mean_x,
min_x,
max_theta_mu,
mean_theta_mu,
min_theta_mu,
],
on_unused_input="ignore",
)
extension = [
GradientClipping(batch_size=batch_size, check_nan=1),
EpochCount(epoch),
Monitoring(