本文整理汇总了Python中classy.Class.h方法的典型用法代码示例。如果您正苦于以下问题:Python Class.h方法的具体用法?Python Class.h怎么用?Python Class.h使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类classy.Class
的用法示例。
在下文中一共展示了Class.h方法的6个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: test_class_setup
# 需要导入模块: from classy import Class [as 别名]
# 或者: from classy.Class import h [as 别名]
def test_class_setup():
cosmology = astropy.cosmology.Planck13
assert cosmology.Om0 == cosmology.Odm0 + cosmology.Ob0
assert 1 == (cosmology.Om0 + cosmology.Ode0 + cosmology.Ok0 +
cosmology.Ogamma0 + cosmology.Onu0)
class_parameters = get_class_parameters(cosmology)
try:
from classy import Class
cosmo = Class()
cosmo.set(class_parameters)
cosmo.compute()
assert cosmo.h() == cosmology.h
assert cosmo.T_cmb() == cosmology.Tcmb0.value
assert cosmo.Omega_b() == cosmology.Ob0
# Calculate Omega(CDM)_0 two ways:
assert abs((cosmo.Omega_m() - cosmo.Omega_b()) -
(cosmology.Odm0 - cosmology.Onu0)) < 1e-8
assert abs(cosmo.Omega_m() - (cosmology.Om0 - cosmology.Onu0)) < 1e-8
# CLASS calculates Omega_Lambda itself so this is a non-trivial test.
calculated_Ode0 = cosmo.get_current_derived_parameters(
['Omega_Lambda'])['Omega_Lambda']
assert abs(calculated_Ode0 - (cosmology.Ode0 + cosmology.Onu0)) < 1e-5
cosmo.struct_cleanup()
cosmo.empty()
except ImportError:
pass
示例2: calculate_power
# 需要导入模块: from classy import Class [as 别名]
# 或者: from classy.Class import h [as 别名]
def calculate_power(cosmology, k_min, k_max, z=0, num_k=500, scaled_by_h=True,
n_s=0.9619, logA=3.0980):
"""
Calculate the power spectrum P(k,z) over the range k_min <= k <= k_max.
"""
try:
from classy import Class
cosmo = Class()
except ImportError:
raise RuntimeError('power.calculate_power requires classy.')
class_parameters = get_class_parameters(cosmology)
class_parameters['output'] = 'mPk'
if scaled_by_h:
class_parameters['P_k_max_h/Mpc'] = k_max
else:
class_parameters['P_k_max_1/Mpc'] = k_max
class_parameters['n_s'] = n_s
class_parameters['ln10^{10}A_s'] = logA
cosmo.set(class_parameters)
cosmo.compute()
if scaled_by_h:
k_scale = cosmo.h()
Pk_scale = cosmo.h()**3
else:
k_scale = 1.
Pk_scale = 1.
result = np.empty((num_k,), dtype=[('k', float), ('Pk', float)])
result['k'][:] = np.logspace(np.log10(k_min), np.log10(k_max), num_k)
for i, k in enumerate(result['k']):
result['Pk'][i] = cosmo.pk(k * k_scale, z) * Pk_scale
cosmo.struct_cleanup()
cosmo.empty()
return result
示例3: len
# 需要导入模块: from classy import Class [as 别名]
# 或者: from classy.Class import h [as 别名]
tau2[-1] *= 0.999 # this tiny shift avoids interpolation errors
tau = np.concatenate((tau1,tau2))
tau_num = len(tau)
#
# use table of background and thermodynamics quantitites to define some functions
# returning some characteristic scales
# (of Hubble crossing, sound horizon crossing, etc.) at different time
#
background = M.get_background() # load background table
#print background.viewkeys()
thermodynamics = M.get_thermodynamics() # load thermodynamics table
#print thermodynamics.viewkeys()
#
background_tau = background['conf. time [Mpc]'] # read conformal times in background table
background_z = background['z'] # read redshift
background_aH = 2.*math.pi*background['H [1/Mpc]']/(1.+background['z'])/M.h() # read 2pi * aH in [h/Mpc]
background_ks = 2.*math.pi/background['comov.snd.hrz.']/M.h() # read 2pi/(comoving sound horizon) in [h/Mpc]
background_rho_m_over_r = (background['(.)rho_b']+background['(.)rho_cdm']) /(background['(.)rho_g']+background['(.)rho_ur']) # read rho_r / rho_m (to find time of equality)
background_rho_l_over_m = background['(.)rho_lambda'] /(background['(.)rho_b']+background['(.)rho_cdm']) # read rho_m / rho_lambda (to find time of equality)
thermodynamics_tau = thermodynamics['conf. time [Mpc]'] # read confromal times in thermodynamics table
thermodynamics_kd = 2.*math.pi/thermodynamics['r_d']/M.h() # read 2pi(comoving diffusion scale) in [h/Mpc]
#
# define a bunch of interpolation functions based on previous quantities
#
background_z_at_tau = interp1d(background_tau,background_z)
background_aH_at_tau = interp1d(background_tau,background_aH)
background_ks_at_tau = interp1d(background_tau,background_ks)
background_tau_at_mr = interp1d(background_rho_m_over_r,background_tau)
background_tau_at_lm = interp1d(background_rho_l_over_m,background_tau)
thermodynamics_kd_at_tau = interp1d(thermodynamics_tau, thermodynamics_kd)
#
示例4: P
# 需要导入模块: from classy import Class [as 别名]
# 或者: from classy.Class import h [as 别名]
plt.ylabel(r'$[\ell(\ell+1)/2\pi] C_\ell^\mathrm{TT}$')
plt.plot(ll,clTT*ll*(ll+1)/2./pi,'r-')
# In[ ]:
plt.savefig('warmup_cltt.pdf')
# In[ ]:
# get P(k) at redhsift z=0
import numpy as np
kk = np.logspace(-4,np.log10(3),1000) # k in h/Mpc
Pk = [] # P(k) in (Mpc/h)**3
h = LambdaCDM.h() # get reduced Hubble for conversions to 1/Mpc
for k in kk:
Pk.append(LambdaCDM.pk(k*h,0.)*h**3) # function .pk(k,z)
# In[ ]:
# plot P(k)
plt.figure(2)
plt.xscale('log');plt.yscale('log');plt.xlim(kk[0],kk[-1])
plt.xlabel(r'$k \,\,\,\, [h/\mathrm{Mpc}]$')
plt.ylabel(r'$P(k) \,\,\,\, [\mathrm{Mpc}/h]^3$')
plt.plot(kk,Pk,'b-')
# In[ ]:
示例5: get_masses
# 需要导入模块: from classy import Class [as 别名]
# 或者: from classy.Class import h [as 别名]
NH.set({'m_ncdm':str(m1)+','+str(m2)+','+str(m3)})
NH.compute()
# inverted hierarchy
[m1, m2, m3] = get_masses(2.45e-3,7.50e-5, sum_masses, 'IH')
IH = Class()
IH.set(commonsettings)
IH.set({'m_ncdm':str(m1)+','+str(m2)+','+str(m3)})
IH.compute()
pkNH = []
pkIH = []
for k in kvec:
pkNH.append(NH.pk(k,0.))
pkIH.append(IH.pk(k,0.))
NH.struct_cleanup()
IH.struct_cleanup()
# extract h value to convert k from 1/Mpc to h/Mpc
h = NH.h()
plt.semilogx(kvec/h,1-np.array(pkNH)/np.array(pkIH))
legarray.append(r'$\Sigma m_i = '+str(sum_masses)+'$eV')
plt.axhline(0,color='k')
plt.xlim(kvec[0]/h,kvec[-1]/h)
plt.xlabel(r'$k [h \mathrm{Mpc}^{-1}]$')
plt.ylabel(r'$1-P(k)^\mathrm{NH}/P(k)^\mathrm{IH}$')
plt.legend(legarray)
# In[6]:
plt.savefig('neutrinohierarchy.pdf')
示例6: amplitude
# 需要导入模块: from classy import Class [as 别名]
# 或者: from classy.Class import h [as 别名]
R = 3./4.*M.Omega_b()/M.Omega_g()/(1+z_rec) # R = 3/4 * (rho_b/rho_gamma) at z_rec
zero_point = -(1.+R)*psi # zero point of oscillations: -(1.+R)*psi
#
# get Theta0 oscillation amplitude (for vertical scale of plot)
#
Theta0_amp = max(Theta0.max(),-Theta0.min())
#
# use table of background quantitites to find the wavenumbers corresponding to
# Hubble crossing (k = 2 pi a H), sound horizon crossing (k = 2pi / rs)
#
background = M.get_background() # load background table
#print background.viewkeys()
#
background_tau = background['conf. time [Mpc]'] # read confromal times in background table
background_z = background['z'] # read redshift
background_kh = 2.*math.pi*background['H [1/Mpc]']/(1.+background['z'])/M.h() # read kh = 2pi aH = 2pi H/(1+z) converted to [h/Mpc]
background_ks = 2.*math.pi/background['comov.snd.hrz.']/M.h() # read ks = 2pi/rs converted to [h/Mpc]
#
# define interpolation functions; we want the value of tau when the argument is equal to 2pi
#
kh_at_tau = interp1d(background_tau,background_kh)
ks_at_tau = interp1d(background_tau,background_ks)
#
# finally get these scales
#
tau_rec = derived['tau_rec']
kh = kh_at_tau(tau_rec)
ks = ks_at_tau(tau_rec)
#
#################
#