本文整理汇总了Python中cdo.Cdo.sub方法的典型用法代码示例。如果您正苦于以下问题:Python Cdo.sub方法的具体用法?Python Cdo.sub怎么用?Python Cdo.sub使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类cdo.Cdo
的用法示例。
在下文中一共展示了Cdo.sub方法的4个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: normalize
# 需要导入模块: from cdo import Cdo [as 别名]
# 或者: from cdo.Cdo import sub [as 别名]
def normalize(resource, grouping='year', region='AUT', start_date="1971-01-01", end_date="2010-12-31", out_dir=None):
"""
noramlize netcdf file for region and timeperiod
:param resource: netcdf filename
:param start_date: string with start date
:param end_date: string with end date
:param out_dir: output directory for result file (netcdf)
:return: normalized netcdf file
"""
rd = ocgis.RequestDataset(resource)
variable = rd.variable
from dateutil import parser as date_parser
time_range=[ date_parser.parse(start_date) , date_parser.parse(end_date) ]
calc = [{'func':'mean','name':'ref_' + variable }]
filename = drs_filename(resource)
filename = filename.replace("EUR", region)
from os.path import join
output = join(out_dir, filename)
prefix = "ref_%s" % filename
prefix = prefix.replace('.nc', '')
try:
reference = ocgis.OcgOperations(
dataset=rd,
geom=COUNTRY_SHP,
dir_output=out_dir,
output_format="nc",
select_ugid=select_ugid(region),
prefix=prefix,
add_auxiliary_files=False,
calc=calc,
calc_grouping=calc_grouping(grouping),
time_range=time_range ).execute()
from tempfile import mkstemp
from cdo import Cdo
cdo = Cdo()
_,out_resource = mkstemp(prefix="out_resource_", dir=out_dir)
cdo.fldmean(input = resource , output = out_resource)
_,out_ref = mkstemp(prefix="out_ref_", dir=out_dir)
cdo.fldmean(input = reference , output = out_ref )
cdo.sub(input = "%s %s" % (out_resource, out_ref) , output = output)
except:
msg = 'normalize failed for file : %s ' % filename
logger.exception(msg)
raise CalculationException(msg)
return output
示例2: get_anomalies
# 需要导入模块: from cdo import Cdo [as 别名]
# 或者: from cdo.Cdo import sub [as 别名]
def get_anomalies(nc_file, frac=0.2, reference=None):
'''
anomalisation of data subsets for weather classification.
Anomalisation is done by substrcting a smoothed anual cycle
:parm nc_file: input netCDF file
:param frac: Number between 0-1 for stregth of smoothing
(0 = close to the original data, 1=flat line)
default=0.2
:param reference: Period to calulate anual cycle
:return string: path to output netCDF file
'''
try:
variable = utils.get_variable(nc_file)
calc = [{'func': 'mean', 'name': variable}]
calc_grouping = calc_grouping = ['day','year']
nc_anual_cycle = call(nc_file, calc=calc, calc_grouping=calc_grouping, time_range=reference)
logger.info('anual cycle calculated')
except Exception as e:
msg = 'failed to calcualte anual cycle %s' % e
logger.error(msg)
raise Exception(msg)
### spline for smoothing
import statsmodels.api as sm
from numpy import tile, empty, linspace
from netCDF4 import Dataset
from cdo import Cdo
cdo = Cdo()
try:
# variable = utils.get_variable(nc_file)
ds = Dataset(nc_anual_cycle, mode='a')
vals = ds.variables[variable]
vals_sm = empty(vals.shape)
ts = vals.shape[0]
x = linspace(1, ts*3 , num=ts*3 , endpoint=True)
for lat in range(vals.shape[1]):
for lon in range(vals.shape[2]):
try:
y = tile(vals[:,lat,lon], 3)
# ys = smooth(y, window_size=91, order=2, deriv=0, rate=1)[ts:ts*2]
ys = sm.nonparametric.lowess(y, x, frac=frac )[ts:ts*2,1]
vals_sm[:,lat,lon] = ys
except Exception as e:
msg = 'failed for lat %s lon %s %s ' % (lat,lon,e)
logger.debug('failed for lat %s lon %s %s ' % (lat,lon,e))
raise Exception(msg)
print 'done for %s - %s ' % (lat, lon)
vals[:,:,:] = vals_sm[:,:,:]
ds.close()
logger.info('smothing of anual cycle done')
except Exception as e:
msg = 'failed smothing of anual cycle %s ' % e
logger.error(msg)
raise Exception(msg)
try:
ip , nc_anomal = mkstemp(dir='.',suffix='.nc')
nc_anomal = cdo.sub(input=[nc_file, nc_anual_cycle], output= nc_anomal )
logger.info('anomalisation done: %s ' % nc_anomal)
except Exception as e:
msg = 'failed substraction of anual cycle %s ' % e
logger.error(msg)
raise Exception(msg)
return nc_anomal
示例3: modelUncertaintyWorker
# 需要导入模块: from cdo import Cdo [as 别名]
# 或者: from cdo.Cdo import sub [as 别名]
def modelUncertaintyWorker(resource):
"""retuns the result
:param resource: list of pathes to netCDF files
"""
from cdo import Cdo
cdo = Cdo()
from flyingpigeon.utils import check_timestepps
# check resource for consistency
resource_qc = check_timestepps(resource)
try:
# ensemble mean and magnitude
nc_ensmean = cdo.ensmean(input = resource_qc, output = 'nc_ensmean.nc')
logger.info('ensmean calculations done')
except Exception as e:
logger.error('ensmean calculations failed: %s ' % e )
try:
#nc_delta = nc_ensmean(lastpt) - nc_ensmean(firstpt)
nc_laststep = cdo.seltimestep('-1', input = nc_ensmean, output = 'nc_laststep.nc')
nc_firststep = cdo.seltimestep(1, input = nc_ensmean, output = 'nc_firststep.nc')
nc_delta = cdo.sub(input = [nc_laststep, nc_firststep], output = 'nc_delta.nc')
nc_absdelta = cdo.abs(input = nc_delta, output = 'nc_absdelta.nc')
logger.info('delta calculation done')
except Exception as e:
logger.error('delta calculation failed: %s ' % e )
try:
# ensemble std
nc_ensstd = cdo.ensstd(input = resource_qc, output = 'nc_ensstd.nc')
logger.info('std calculation done')
except Exception as e:
logger.error('std calculation failed: %s ' % e )
try:
# compute mask: if nc_absdelta > nc_enssstd
nc_level = cdo.mulc(1, input = nc_ensstd, output = 'nc_level.nc')
nc_binmask = cdo.gt(input = [nc_absdelta, nc_level], output = 'nc_binmask.nc')
logger.info('calculated mask')
except Exception as e:
logger.error('mask calculation failed: %s ' % e )
#if > const
#cdo.gtc('arg', input=infile, ontput=outfile)
# mean + sigma as a mask
# sigma1 = cdo.fldstd(input = nc_ensmean, output = 'nc_sigma1.nc')
# mask
# mean + 2* sigma as a mask
# merge to on result netCDF
# cdo.merge(input=[file1, file2], output='result.nc')
result = nc_ensmean #ensemble mean
result2 = nc_ensstd #ensemble std
result3 = nc_absdelta #magnitude of model change
result4 = nc_binmask #absdelta > std
return result, result2, result3, result4
示例4: method_A
# 需要导入模块: from cdo import Cdo [as 别名]
# 或者: from cdo.Cdo import sub [as 别名]
#.........这里部分代码省略.........
if timeslice == None:
timeslice = int((end - start) / 3)
if timeslice == 0:
timeslice = 1
else:
timeslice = int(timeslice)
start1 = start
start2 = start1 + timeslice - 1
end1 = end - timeslice + 1
end2 = end
logger.info('timeslice and periodes set')
except Exception as e:
msg = 'failed to set the periodes'
logger.exception(msg)
raise Exception(msg)
try:
files = []
for i, mf in enumerate(mergefiles):
files.append(cdo.selyear('{0}/{1}'.format(start1,end2), input=[mf.replace(' ','\ ')] , output='file_{0}_.nc'.format(i) )) #python version
logger.info('timeseries selected from defined start to end year')
except Exception as e:
msg = 'seltime and mergetime failed'
logger.exception(msg)
raise Exception(msg)
try:
# ensemble mean
nc_ensmean = cdo.ensmean(input=files , output='nc_ensmean.nc')
logger.info('ensemble mean calculation done')
except Exception as e:
msg = 'ensemble mean failed'
logger.exception(msg)
raise Exception(msg)
try:
# ensemble std
nc_ensstd = cdo.ensstd(input=files , output='nc_ensstd.nc')
logger.info('ensemble std and calculation done')
except Exception as e:
msg = 'ensemble std or failed'
logger.exception(msg)
raise Exception(msg)
# get the get the signal as difference from the beginning (first years) and end period (last years), :
try:
selyearstart = cdo.selyear('%s/%s' % (start1,start2), input = nc_ensmean, output = 'selyearstart.nc' )
selyearend = cdo.selyear('%s/%s' % (end1,end2), input = nc_ensmean, output = 'selyearend.nc' )
meanyearst = cdo.timmean(input = selyearstart, output= 'meanyearst.nc')
meanyearend = cdo.timmean(input = selyearend, output= 'meanyearend.nc')
signal = cdo.sub(input=[meanyearend, meanyearst], output = 'signal.nc')
logger.info('Signal calculation done')
except Exception as e:
msg = 'calculation of signal failed'
logger.exception(msg)
raise Exception(msg)
# get the intermodel standard deviation (mean over whole period)
try:
#std_selyear = cdo.selyear('%s/%s' % (end1,end2), input=nc_ensstd, output='std_selyear.nc')
#std = cdo.timmean(input = std_selyear, output = 'std.nc')
std = cdo.timmean(input = nc_ensstd, output = 'std.nc')
std2 = cdo.mulc('2', input = std, output = 'std2.nc')
logger.info('calculation of internal model std for time period done')
except Exception as e:
msg = 'calculation of internal model std failed'
logger.exception(msg)
raise Exception(msg)
try:
absolut = cdo.abs(input=signal, output='absolut_signal.nc')
high_agreement_mask = cdo.gt(input=[absolut,std2], output= 'large_change_with_high_model_agreement.nc')
low_agreement_mask = cdo.lt(input=[absolut,std], output= 'small_signal_or_low_agreement_of_models.nc')
logger.info('high and low mask done')
except Exception as e:
msg = 'calculation of robustness mask failed'
logger.exception(msg)
raise Exception(msg)
try:
if variable == None:
variable = get_variable(signal)
logger.info('variable to be plotted: %s' % variable)
if title == None:
title='Change of %s (difference of mean %s-%s to %s-%s)' % (variable, end1, end2, start1, start2)
graphic = None
graphic = map_ensembleRobustness(signal, high_agreement_mask, low_agreement_mask,
variable=variable,
cmap=cmap,
title = title)
logger.info('graphic generated')
except Exception as e:
msg('graphic generation failed: %s' % e)
logger.debug(msg)
raise Exception(msg)
return signal, low_agreement_mask, high_agreement_mask, graphic, text_src #