本文整理汇总了Python中ccdproc.CCDData类的典型用法代码示例。如果您正苦于以下问题:Python CCDData类的具体用法?Python CCDData怎么用?Python CCDData使用的例子?那么恭喜您, 这里精选的类代码示例或许可以为您提供帮助。
在下文中一共展示了CCDData类的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: makeMasterFlat
def makeMasterFlat(images, master_bias):
"""
Flats are corrected for their bias level (if
master_bias)
TODO: Finish docstring
"""
try:
fitsfile = 'master_flat.fits'
master_flat = CCDData.read(fitsfile, unit=u.adu)
return master_flat
except FileNotFoundError:
# empty list for the flats
flat_list = []
# create the master flat field
print('Reducing flats')
for f in images.files_filtered(imagetyp=FLAT_KEYWORD):
print(f)
with fits.open(f) as fitsfile:
data_exp = fitsfile[0].header[EXPTIME_KEYWORD]
ccd = CCDData.read(f, unit=u.adu)
if master_bias:
ccd = subtract_bias(ccd, master_bias)
else:
print('No master bias, skipping correction...')
flat_list.append(ccd)
try:
master_flat = combine(flat_list, method='median')
master_flat.write('master_flat.fits', clobber=True)
return master_flat
except IndexError:
print('There are no flats, skipping...')
master_flat = None
示例2: load_image
def load_image(filename):
try:
data = CCDData.read(filename)
except(ValueError):
try:
data = CCDData.read(filename, unit = u.dyn)
except:
raise
return data
示例3: reduce_image
def reduce_image(imagefile, dark=None, flat=None):
im = CCDData.read(imagefile, unit='adu')
if dark is not None:
dark = CCDData.read(dark, unit='adu')
im = im.subtract(dark)
if flat is not None:
# masterflat = CCDData.read(flat, unit='adu')
hdul = fits.open(flat)
masterflat = CCDData(data=hdul[0].data, uncertainty=None, meta=hdul[0].header, unit='adu')
im = flat_correct(im, masterflat)
return im
示例4: main
def main():
parser = argparse.ArgumentParser(description='Perform LACosmic cleaning of images')
parser.add_argument('filenames',nargs='+',help='List of files to clean.')
parser.add_argument('-odir',metavar='outdir',required=True,type=str,help='Output directory for files.')
#parser.add_argument('-mode',choices=['lacosmic','median'],default='lacosmic',help='Specify mode of operation (default=lacosmic)')
parser.add_argument('-sclip',metavar='sigclip',type=float,default=5,help='Laplacian-to-noise limit for cosmic ray detection. Lower values will flag more pixels as cosmic rays (default=5).')
parser.add_argument('-sfrac',metavar='sigfrac',type=float,default=0.3,help='Fractional detection limit for neighboring pixels. For cosmic ray neighbor pixels, a Laplacian-to-noise detection limit of sigfrac * sigclip will be used. (default=0.3).')
parser.add_argument('-objlim',type=float,default=5,help='Minimum contrast between Laplacian image and the fine structure image. Increase this value if cores of bright stars are flagged as cosmic rays (default=5).')
parser.add_argument('-satlevel',type=float,default=65535,help='Saturation level of the image (electrons). This value is used to detect saturated stars and pixels at or above this level are added to the mask (default=65535)')
parser.add_argument('-niter',type=int,default=5,help='umber of iterations of the LA Cosmic algorithm to perform (default=5).')
#parser.add_argument('-thresh',metavar='threshold',type=float,default=5,help='Threshold for detecting cosmic rays [median] (default=5).')
#parser.add_argument('-mbox',type=float,default=11,help='Median box for detecting cosmic rays [mbox] (default=11).')
parser.add_argument('-njobs',type=int,default=1,help='Process images in parallel. "-1" is all CPUs (default=1).')
parser.add_argument('--c',action='store_true',help='Clobber (overwrite) on output')
args = parser.parse_args()
ccds = (CCDData.read(fname,unit='adu') for fname in args.filenames)
with Parallel(args.njobs,verbose=11) as parallel:
cleaned = parallel(delayed(cosmicray_lacosmic)(ccd,sigclip=args.sclip,sigfrac=args.sfrac,niter=args.niter,objlim=args.objlim,satlevel=args.satlevel) for ccd in ccds)
outfiles = (os.path.join(args.odir,os.path.basename(fname)) for fname in args.filenames)
for hdu,outfile in zip(cleaned,outfiles):
if isinstance(hdu,CCDData):
hdu = hdu.to_hdu(hdu_mask=None,hdu_uncertainty=None)
header = hdu[0].header
header.add_history('clean.py - %s' % Time(Time.now(),format='fits'))
header['CLEANED'] = (True,'Cleaned with LACosmics')
header['CLNMTHD'] = (CLNMTHD,'Method used to clean')
try:
hdu.writeto(outfile,overwrite=args.c)
except OSError as e:
raise OSError("File '%s' already exists. Re-run with --c flag to overwrite existing files." % outfile) from e
示例5: setUp
def setUp(self):
# create a master flat
self.master_flat = CCDData(data=np.ones((100, 100)),
meta=fits.Header(),
unit='adu')
self.master_flat.header.set('GRATING', value='RALC_1200-BLUE')
self.master_flat.header.set('SLIT', value='0.84" long slit')
self.master_flat.header.set('FILTER2', value='<NO FILTER>')
self.master_flat.header.set('WAVMODE', value='1200 m2')
self.master_flat_name = 'master_flat_1200m2.fits'
# expected master flat to be retrieved by get_best_flat
self.reference_flat_name = 'master_flat_1200m2_0.84_dome.fits'
# location of sample flats
self.flat_path = 'goodman_pipeline/data/test_data/master_flat'
slit = re.sub('[A-Za-z" ]',
'',
self.master_flat.header['SLIT'])
self.flat_name_base = re.sub('.fits',
'_' + slit + '*.fits',
self.master_flat_name)
# save a master flat with some random structure.
self.master_flat_name_norm = 'flat_to_normalize.fits'
# add a bias level
self.master_flat.data += 300.
# add noise
self.master_flat.data += np.random.random_sample(
self.master_flat.data.shape)
self.master_flat.write(os.path.join(self.flat_path,
self.master_flat_name_norm),
overwrite=False)
示例6: __call__
def __call__(self, in_file, save=False):
self.file = in_file
self.fig, self.ax = plt.subplots()
# read data and get its wavelength solution
ccd = CCDData.read(self.file, unit=u.adu)
wcs_reader = ReadWavelengthSolution(header=ccd.header,
data=ccd.data)
wavelength, intensity = wcs_reader()
manager = plt.get_current_fig_manager()
manager.window.showMaximized()
plt.title('{:s}\n{:s}'.format(self.file, ccd.header['OBJECT']))
self.ax.plot(wavelength, intensity, color='k', label='Data')
self.ax.axvline(6562.8, color='r')
self.ax.set_xlim((wavelength[0], wavelength[-1]))
self.ax.set_ylabel('Intensity (ADU)')
self.ax.set_xlabel('Wavelength (Angstrom)')
plt.legend(loc='best')
plt.subplots_adjust(left=0.05,
right=0.99,
top=0.96,
bottom=0.04,
hspace=0.17,
wspace=0.11)
# plt.tight_layout()
if not save:
self.fig.canvas.mpl_connect('key_press_event', self.key_pressed)
plt.show()
示例7: test_fit_linear
def test_fit_linear(self):
test_file = os.path.join(self.data_path,
'goodman_comp_400M1_HgArNe.fits')
ccd = CCDData.read(test_file, unit='adu')
pixel, angstrom = self._recover_lines(ccd=ccd)
model = self.wcs.fit(physical=pixel,
wavelength=angstrom,
model_name='linear')
self.assertIsInstance(model, Model)
示例8: test_read__non_linear_cspline
def test_read__non_linear_cspline(self):
test_file = os.path.join(self.data_path,
'non-linear_fits_solution_cubic-spline.fits')
self.assertTrue(os.path.isfile(test_file))
ccd = CCDData.read(test_file, unit='adu')
self.assertRaises(NotImplementedError, self.wcs.read, ccd)
self.assertRaisesRegex(NotImplementedError,
'Cubic spline is not implemented',
self.wcs.read, ccd)
示例9: test_read__non_linear_legendre
def test_read__non_linear_legendre(self):
test_file = os.path.join(self.data_path,
'non-linear_fits_solution_legendre.fits')
self.assertTrue(os.path.isfile(test_file))
ccd = CCDData.read(test_file, unit='adu')
result = self.wcs.read(ccd=ccd)
self.assertIsInstance(self.wcs.model, Model)
self.assertEqual(self.wcs.model.__class__.__name__, 'Legendre1D')
示例10: test_read_gsp_wcs
def test_read_gsp_wcs(self):
test_file = os.path.join(self.data_path,
'goodman_comp_400M1_HgArNe.fits')
self.assertTrue(os.path.isfile(test_file))
ccd = CCDData.read(test_file, unit='adu')
result = self.wcs.read_gsp_wcs(ccd=ccd)
self.assertIsInstance(result, list)
self.assertEqual(len(result), 2)
self.assertIsInstance(self.wcs.get_model(), Model)
示例11: test_read__linear
def test_read__linear(self):
test_file = os.path.join(self.data_path,
'linear_fits_solution.fits')
self.assertTrue(os.path.isfile(test_file))
ccd = CCDData.read(test_file, unit='adu')
result = self.wcs.read(ccd=ccd)
self.assertIsInstance(result, list)
self.assertEqual(len(result), 2)
self.assertIsInstance(self.wcs.get_model(), Model)
示例12: create_master_flat
def create_master_flat(filepath='../../../KeckData/MOSFIRE_FCS/',
flatfiles = ['m180130_0320.fits',
'm180130_0321.fits',
'm180130_0322.fits',
'm180130_0323.fits',
'm180130_0324.fits',],
darkfile = 'm180130_0001.fits',
):
dark = CCDData.read(os.path.join(filepath, darkfile), unit='adu')
flats = []
for i,file in enumerate(flatfiles):
flat = CCDData.read(os.path.join(filepath, file), unit='adu')
flat = flat.subtract(dark)
flats.append(flat)
flat_combiner = Combiner(flats)
flat_combiner.sigma_clipping()
scaling_func = lambda arr: 1/np.ma.average(arr)
flat_combiner.scaling = scaling_func
masterflat = flat_combiner.median_combine()
masterflat.write('masterflat.fits', overwrite=True)
示例13: test_read__invalid
def test_read__invalid(self):
test_file = os.path.join(self.data_path,
'linear_fits_solution.fits')
self.assertTrue(os.path.isfile(test_file))
ccd = CCDData.read(test_file, unit='adu')
ccd.wcs.wcs.ctype[0] = 'INVALID'
self.assertRaisesRegex(NotImplementedError,
'CTYPE INVALID is not recognized',
self.wcs.read,
ccd)
self.assertRaises(NotImplementedError, self.wcs.read, ccd)
示例14: makeMasterBias
def makeMasterBias(images):
"""
Make a master bias using all biases found in
images object
TODO: Finish docstring
"""
try:
master_bias = CCDData.read('master_bias.fits', unit=u.adu)
return master_bias
except FileNotFoundError:
bias_list = []
for f in images.files_filtered(imagetyp=BIAS_KEYWORD):
print(f)
ccd = CCDData.read(f, unit=u.adu)
bias_list.append(ccd)
try:
master_bias = combine(bias_list, method='median')
master_bias.write('master_bias.fits', clobber=True)
return master_bias
except IndexError:
return None
示例15: test_fit_chebyshev
def test_fit_chebyshev(self):
test_file = os.path.join(self.data_path,
'goodman_comp_400M1_HgArNe.fits')
ccd = CCDData.read(test_file, unit='adu')
pixel, angstrom = self._recover_lines(ccd=ccd)
model = self.wcs.fit(physical=pixel, wavelength=angstrom)
self.assertIsInstance(model, Model)
self.assertEqual(model.__class__.__name__, ccd.header['GSP_FUNC'])
self.assertEqual(model.degree, ccd.header['GSP_ORDR'])
for i in range(model.degree + 1):
self.assertAlmostEqual(model.__getattr__('c{:d}'.format(i)).value,
ccd.header['GSP_C{:03d}'.format(i)])