本文整理汇总了Python中carbon.cache.MetricCache.drain_metric方法的典型用法代码示例。如果您正苦于以下问题:Python MetricCache.drain_metric方法的具体用法?Python MetricCache.drain_metric怎么用?Python MetricCache.drain_metric使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类carbon.cache.MetricCache
的用法示例。
在下文中一共展示了MetricCache.drain_metric方法的2个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: optimalWriteOrder
# 需要导入模块: from carbon.cache import MetricCache [as 别名]
# 或者: from carbon.cache.MetricCache import drain_metric [as 别名]
def optimalWriteOrder():
"""Generates metrics with the most cached values first and applies a soft
rate limit on new metrics"""
while MetricCache:
(metric, datapoints) = MetricCache.drain_metric()
dbFileExists = state.database.exists(metric)
if not dbFileExists and CREATE_BUCKET:
# If our tokenbucket has enough tokens available to create a new metric
# file then yield the metric data to complete that operation. Otherwise
# we'll just drop the metric on the ground and move on to the next
# metric.
# XXX This behavior should probably be configurable to no tdrop metrics
# when rate limitng unless our cache is too big or some other legit
# reason.
if CREATE_BUCKET.drain(1):
yield (metric, datapoints, dbFileExists)
continue
yield (metric, datapoints, dbFileExists)
示例2: writeCachedDataPoints
# 需要导入模块: from carbon.cache import MetricCache [as 别名]
# 或者: from carbon.cache.MetricCache import drain_metric [as 别名]
def writeCachedDataPoints():
"Write datapoints until the MetricCache is completely empty"
cache = MetricCache()
while cache:
(metric, datapoints) = cache.drain_metric()
if metric is None:
# end the loop
break
dbFileExists = state.database.exists(metric)
if not dbFileExists:
if CREATE_BUCKET and not CREATE_BUCKET.drain(1):
# If our tokenbucket doesn't have enough tokens available to create a new metric
# file then we'll just drop the metric on the ground and move on to the next
# metric.
# XXX This behavior should probably be configurable to no tdrop metrics
# when rate limitng unless our cache is too big or some other legit
# reason.
instrumentation.increment('droppedCreates')
continue
archiveConfig = None
xFilesFactor, aggregationMethod = None, None
for schema in SCHEMAS:
if schema.matches(metric):
if settings.LOG_CREATES:
log.creates('new metric %s matched schema %s' % (metric, schema.name))
archiveConfig = [archive.getTuple() for archive in schema.archives]
break
for schema in AGGREGATION_SCHEMAS:
if schema.matches(metric):
if settings.LOG_CREATES:
log.creates('new metric %s matched aggregation schema %s'
% (metric, schema.name))
xFilesFactor, aggregationMethod = schema.archives
break
if not archiveConfig:
raise Exception(("No storage schema matched the metric '%s',"
" check your storage-schemas.conf file.") % metric)
if settings.LOG_CREATES:
log.creates("creating database metric %s (archive=%s xff=%s agg=%s)" %
(metric, archiveConfig, xFilesFactor, aggregationMethod))
try:
state.database.create(metric, archiveConfig, xFilesFactor, aggregationMethod)
if settings.ENABLE_TAGS:
tagQueue.add(metric)
instrumentation.increment('creates')
except Exception as e:
log.err()
log.msg("Error creating %s: %s" % (metric, e))
instrumentation.increment('errors')
continue
# If we've got a rate limit configured lets makes sure we enforce it
waitTime = 0
if UPDATE_BUCKET:
t1 = time.time()
UPDATE_BUCKET.drain(1, blocking=True)
waitTime = time.time() - t1
try:
t1 = time.time()
# If we have duplicated points, always pick the last. update_many()
# has no guaranted behavior for that, and in fact the current implementation
# will keep the first point in the list.
datapoints = dict(datapoints).items()
state.database.write(metric, datapoints)
if settings.ENABLE_TAGS:
tagQueue.update(metric)
updateTime = time.time() - t1
except Exception as e:
log.err()
log.msg("Error writing to %s: %s" % (metric, e))
instrumentation.increment('errors')
else:
pointCount = len(datapoints)
instrumentation.increment('committedPoints', pointCount)
instrumentation.append('updateTimes', updateTime)
if settings.LOG_UPDATES:
if waitTime > 0.001:
log.updates("wrote %d datapoints for %s in %.5f seconds after waiting %.5f seconds" % (
pointCount, metric, updateTime, waitTime))
else:
log.updates("wrote %d datapoints for %s in %.5f seconds" % (
pointCount, metric, updateTime))