当前位置: 首页>>代码示例>>Python>>正文


Python DatasetList.append_new_dataset方法代码示例

本文整理汇总了Python中cafe.drivers.unittest.datasets.DatasetList.append_new_dataset方法的典型用法代码示例。如果您正苦于以下问题:Python DatasetList.append_new_dataset方法的具体用法?Python DatasetList.append_new_dataset怎么用?Python DatasetList.append_new_dataset使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在cafe.drivers.unittest.datasets.DatasetList的用法示例。


在下文中一共展示了DatasetList.append_new_dataset方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: volume_types_with_restore_control

# 需要导入模块: from cafe.drivers.unittest.datasets import DatasetList [as 别名]
# 或者: from cafe.drivers.unittest.datasets.DatasetList import append_new_dataset [as 别名]
    def volume_types_with_restore_control(
            cls, max_datasets=None, randomize=False, model_filter=None,
            filter_mode=BlockstorageDatasets.INCLUSION_MODE):
        """Returns a DatasetList of all VolumeTypes
        Filters should be dictionaries with model attributes as keys and
        lists of attributes as key values.
        """

        volume_type_list = cls._get_volume_types()
        volume_type_list = cls._filter_model_list(
            volume_type_list, model_filter=model_filter,
            filter_mode=filter_mode)

        dataset_list = DatasetList()
        is_enabled = \
            cls._volumes.config.allow_snapshot_restore_to_different_type
        for vol_type in volume_type_list:
            data = {'volume_type_name': vol_type.name,
                    'volume_type_id': vol_type.id_,
                    'restore_to_different_type_enabled': is_enabled}
            test_name = "{0}_to_other_is_{1}".format(
                vol_type.name, "allowed" if is_enabled else "disabled")
            dataset_list.append_new_dataset(test_name, data)

        # Apply modifiers
        return cls._modify_dataset_list(
            dataset_list, max_datasets=max_datasets, randomize=randomize)
开发者ID:bhushan5,项目名称:cloudroast,代码行数:29,代码来源:smoke.py

示例2: images_by_volume_type

# 需要导入模块: from cafe.drivers.unittest.datasets import DatasetList [as 别名]
# 或者: from cafe.drivers.unittest.datasets.DatasetList import append_new_dataset [as 别名]
    def images_by_volume_type(
            cls, max_datasets=None, randomize=False, image_filter=None,
            volume_type_filter=None):
        """Returns a DatasetList of permuations of Volume Types and Images.
        Requests all available images and volume types from API, and applies
        image_filter and volume_type_filter if provided.
        Filters should be dictionaries with model attributes as keys and
        lists of attributes as key values
        """

        image_list = cls._filter_model_list(cls._images(), image_filter)
        volume_type_list = cls._filter_model_list(
            cls._volume_types(), volume_type_filter)

        # Create dataset from all combinations of all images and volume types
        dataset_list = DatasetList()
        for vol_type in volume_type_list:
            for img in image_list:
                data = {'volume_type': vol_type,
                        'image': img}
                testname = "{0}_volume_from_{1}_image".format(
                    vol_type.name,
                    str(img.name).replace(" ", "_"))
                dataset_list.append_new_dataset(testname, data)

        # Apply modifiers
        if randomize:
            shuffle(dataset_list)

        if max_datasets:
            dataset_list = dataset_list[:max_datasets]

        return dataset_list
开发者ID:cloudkeep,项目名称:cloudroast,代码行数:35,代码来源:datasets.py

示例3: images_by_flavor

# 需要导入模块: from cafe.drivers.unittest.datasets import DatasetList [as 别名]
# 或者: from cafe.drivers.unittest.datasets.DatasetList import append_new_dataset [as 别名]
    def images_by_flavor(
            cls, max_datasets=None, randomize=False,
            image_filter=None, flavor_filter=None,
            image_filter_mode=ModelBasedDatasetToolkit.INCLUSION_MODE,
            flavor_filter_mode=ModelBasedDatasetToolkit.INCLUSION_MODE):
        """Returns a DatasetList of all combinations of Flavors and Images.
        Filters should be dictionaries with model attributes as keys and
        lists of attributes as key values
        """
        image_list = cls._get_images()
        image_list = cls._filter_model_list(
            image_list, model_filter=image_filter,
            filter_mode=image_filter_mode)

        flavor_list = cls._get_flavors()
        flavor_list = cls._filter_model_list(
            flavor_list, model_filter=flavor_filter,
            filter_mode=flavor_filter_mode)

        dataset_list = DatasetList()
        for image in image_list:
            for flavor in flavor_list:
                data = {'flavor': flavor,
                        'image': image}
                testname = \
                    "image_{0}_and_flavor_{1}".format(
                        str(image.name).replace(" ", "_").replace("/", "-"),
                        str(flavor.name).replace(" ", "_").replace("/", "-"))
                dataset_list.append_new_dataset(testname, data)

        # Apply modifiers
        return cls._modify_dataset_list(
            dataset_list, max_datasets=max_datasets, randomize=randomize)
开发者ID:kshortwindham,项目名称:cloudcafe,代码行数:35,代码来源:datasets.py

示例4: images_by_volume_type

# 需要导入模块: from cafe.drivers.unittest.datasets import DatasetList [as 别名]
# 或者: from cafe.drivers.unittest.datasets.DatasetList import append_new_dataset [as 别名]
    def images_by_volume_type(
            cls, max_datasets=None, randomize=False,
            image_filter=None, volume_type_filter=None,
            image_filter_mode=ModelBasedDatasetToolkit.INCLUSION_MODE,
            volume_type_filter_mode=ModelBasedDatasetToolkit.INCLUSION_MODE):
        """Returns a DatasetList of all combinations of Images and
        Volume Types.
        Filters should be dictionaries with model attributes as keys and
        lists of attributes as key values
        """
        image_list = cls._get_images()
        image_list = cls._filter_model_list(
            image_list, model_filter=image_filter,
            filter_mode=image_filter_mode)

        volume_type_list = cls._get_volume_types()
        volume_type_list = cls._filter_model_list(
            volume_type_list, model_filter=volume_type_filter,
            filter_mode=volume_type_filter_mode)

        # Create dataset from all combinations of all images and volume types
        dataset_list = DatasetList()
        for vtype in volume_type_list:
            for image in image_list:
                data = {'volume_type': vtype,
                        'image': image}
                testname = \
                    "{0}_and_{1}".format(
                        str(vtype.name).replace(" ", "_"),
                        str(image.name).replace(" ", "_"))
                dataset_list.append_new_dataset(testname, data)

        # Apply modifiers
        return cls._modify_dataset_list(
            dataset_list, max_datasets=max_datasets, randomize=randomize)
开发者ID:openstack,项目名称:cloudcafe,代码行数:37,代码来源:datasets.py

示例5: volume_types

# 需要导入模块: from cafe.drivers.unittest.datasets import DatasetList [as 别名]
# 或者: from cafe.drivers.unittest.datasets.DatasetList import append_new_dataset [as 别名]
    def volume_types(
            cls, max_datasets=None, randomize=None, model_filter=None,
            filter_mode=ModelBasedDatasetToolkit.INCLUSION_MODE, tags=None):
        """Returns a DatasetList of all VolumeTypes
        Filters should be dictionaries with model attributes as keys and
        lists of attributes as key values
        """

        volume_type_list = cls._get_volume_types()
        volume_type_list = cls._filter_model_list(
            volume_type_list, model_filter=model_filter,
            filter_mode=filter_mode)

        dataset_list = DatasetList()
        for vol_type in volume_type_list:
            data = {'volume_type_name': vol_type.name,
                    'volume_type_id': vol_type.id_}
            dataset_list.append_new_dataset(vol_type.name, data)

        # Apply modifiers
        dataset_list = cls._modify_dataset_list(
            dataset_list, max_datasets=max_datasets, randomize=randomize)

        # Apply Tags
        if tags:
            dataset_list.apply_test_tags(*tags)

        return dataset_list
开发者ID:openstack,项目名称:cloudcafe,代码行数:30,代码来源:datasets.py

示例6: volume_types

# 需要导入模块: from cafe.drivers.unittest.datasets import DatasetList [as 别名]
# 或者: from cafe.drivers.unittest.datasets.DatasetList import append_new_dataset [as 别名]
    def volume_types(cls):
        """Returns a DatasetList of Volume Type names and id's"""

        cinder_cli = CinderCLI_Composite()
        volume_type_list = cinder_cli.behaviors.list_volume_types()
        dataset_list = DatasetList()
        for vol_type in volume_type_list:
            data = {'volume_type_name': vol_type.name,
                    'volume_type_id': vol_type.id_}
            dataset_list.append_new_dataset(vol_type.name, data)
        return dataset_list
开发者ID:cloudkeep,项目名称:cloudroast,代码行数:13,代码来源:fixtures.py

示例7: volume_types

# 需要导入模块: from cafe.drivers.unittest.datasets import DatasetList [as 别名]
# 或者: from cafe.drivers.unittest.datasets.DatasetList import append_new_dataset [as 别名]
    def volume_types(
            cls, max_datasets=None, randomize=False, volume_type_filter=None):
        """Returns a DatasetList of Volume Type names and id's"""

        volume_type_list = cls._filter_model_list(
            cls._volume_types(), volume_type_filter)
        dataset_list = DatasetList()
        for vol_type in volume_type_list:
            data = {'volume_type_name': vol_type.name,
                    'volume_type_id': vol_type.id_}
            dataset_list.append_new_dataset(vol_type.name, data)
        return dataset_list
开发者ID:cloudkeep,项目名称:cloudroast,代码行数:14,代码来源:datasets.py

示例8: valid_quota_names

# 需要导入模块: from cafe.drivers.unittest.datasets import DatasetList [as 别名]
# 或者: from cafe.drivers.unittest.datasets.DatasetList import append_new_dataset [as 别名]
    def valid_quota_names(cls):

        """Creates a list of expected resource names"""

        quota_test_dataset = DatasetList()

        resources = ["snapshots", "volumes", "gigabytes"]
        vol_types = cls._get_volume_type_names()

        for resource in resources:
            quota_test_dataset.append_new_dataset(resource, {"quota_name": resource})

            for vol_name in vol_types:
                resource_key = "{resource}_{vol_name}".format(resource=resource, vol_name=vol_name)
                quota_test_dataset.append_new_dataset(resource_key, {"quota_name": resource_key})

        return quota_test_dataset
开发者ID:kshortwindham,项目名称:cloudroast,代码行数:19,代码来源:volume_quota_tests.py

示例9: flavors_by_images_by_volume_type

# 需要导入模块: from cafe.drivers.unittest.datasets import DatasetList [as 别名]
# 或者: from cafe.drivers.unittest.datasets.DatasetList import append_new_dataset [as 别名]
    def flavors_by_images_by_volume_type(
            cls, max_datasets=None, randomize=None,
            flavor_filter=None, volume_type_filter=None, image_filter=None,
            flavor_filter_mode=ModelBasedDatasetToolkit.INCLUSION_MODE,
            volume_type_filter_mode=ModelBasedDatasetToolkit.INCLUSION_MODE,
            image_filter_mode=ModelBasedDatasetToolkit.INCLUSION_MODE,):
        """Returns a DatasetList of all combinations of Flavors and
        Volume Types.
        Filters should be dictionaries with model attributes as keys and
        lists of attributes as key values
        """
        image_list = cls._get_images()
        image_list = cls._filter_model_list(
            image_list, model_filter=image_filter,
            filter_mode=image_filter_mode)

        flavor_list = cls._get_flavors()
        flavor_list = cls._filter_model_list(
            flavor_list, model_filter=flavor_filter,
            filter_mode=flavor_filter_mode)

        volume_type_list = cls._get_volume_types()
        volume_type_list = cls._filter_model_list(
            volume_type_list, model_filter=volume_type_filter,
            filter_mode=volume_type_filter_mode)

        # Create dataset from all combinations of all images, flavors, and
        # volume types
        dataset_list = DatasetList()
        for vtype in volume_type_list:
            for flavor in flavor_list:
                for image in image_list:
                    data = {'volume_type': vtype,
                            'flavor': flavor,
                            'image': image}
                    testname = \
                        "{flavor}_{image}_on_{vtype}".format(
                            flavor=str(flavor.name), image=str(image.name),
                            vtype=str(vtype.name)).replace(' ', '_').replace(
                            '.', '_').replace('(', '').replace(
                            ')', '').replace('/', '-')
                    dataset_list.append_new_dataset(testname, data)

        # Apply modifiers
        return cls._modify_dataset_list(
            dataset_list, max_datasets=max_datasets, randomize=randomize)
开发者ID:openstack,项目名称:cloudcafe,代码行数:48,代码来源:datasets.py

示例10: build_basic_dataset

# 需要导入模块: from cafe.drivers.unittest.datasets import DatasetList [as 别名]
# 或者: from cafe.drivers.unittest.datasets.DatasetList import append_new_dataset [as 别名]
def build_basic_dataset(data_dict, name):
    """
    @summary: Builds a dataset list from a dictionary of key-value pairs

    @param data_dict: Url amendments and values for the dataset list
    @type data_dict: Dictionary
    @param name: Name of the test parameter
    @type name: String

    @return: Dataset_List
    @rtype: DatasetList
    """

    dataset_list = DatasetList()

    for key, value in data_dict.iteritems():
        dataset_list.append_new_dataset(key, {name: value})

    return dataset_list
开发者ID:kshortwindham,项目名称:cloudroast,代码行数:21,代码来源:generators.py

示例11: images

# 需要导入模块: from cafe.drivers.unittest.datasets import DatasetList [as 别名]
# 或者: from cafe.drivers.unittest.datasets.DatasetList import append_new_dataset [as 别名]
    def images(
            cls, max_datasets=None, randomize=False, model_filter=None,
            filter_mode=ModelBasedDatasetToolkit.INCLUSION_MODE):
        """Returns a DatasetList of all Images.
        Filters should be dictionaries with model attributes as keys and
        lists of attributes as key values
        """
        image_list = cls._get_images()
        image_list = cls._filter_model_list(
            image_list, model_filter=model_filter, filter_mode=filter_mode)

        dataset_list = DatasetList()
        for img in image_list:
            data = {'image': img}
            dataset_list.append_new_dataset(
                str(img.name).replace(" ", "_").replace("/", "-"), data)

        # Apply modifiers
        return cls._modify_dataset_list(
            dataset_list, max_datasets=max_datasets, randomize=randomize)
开发者ID:kshortwindham,项目名称:cloudcafe,代码行数:22,代码来源:datasets.py

示例12: flavors

# 需要导入模块: from cafe.drivers.unittest.datasets import DatasetList [as 别名]
# 或者: from cafe.drivers.unittest.datasets.DatasetList import append_new_dataset [as 别名]
    def flavors(
            cls, max_datasets=None, randomize=False, model_filter=None,
            filter_mode=ModelBasedDatasetToolkit.INCLUSION_MODE):
        """Returns a DatasetList of all Flavors
        Filters should be dictionaries with model attributes as keys and
        lists of attributes as key values
        """
        flavor_list = cls._get_flavors()
        flavor_list = cls._filter_model_list(
            flavor_list, model_filter=model_filter, filter_mode=filter_mode)

        dataset_list = DatasetList()
        for flavor in flavor_list:
            data = {'flavor': flavor}
            dataset_list.append_new_dataset(
                str(flavor.name).replace(" ", "_").replace("/", "-"), data)

        # Apply modifiers
        return cls._modify_dataset_list(
            dataset_list, max_datasets=max_datasets, randomize=randomize)
开发者ID:kshortwindham,项目名称:cloudcafe,代码行数:22,代码来源:datasets.py

示例13: DatasetList

# 需要导入模块: from cafe.drivers.unittest.datasets import DatasetList [as 别名]
# 或者: from cafe.drivers.unittest.datasets.DatasetList import append_new_dataset [as 别名]
from cloudroast.objectstorage.fixtures import ObjectStorageFixture
from cloudcafe.common.tools import randomstring as randstring


BASE_NAME = "extract_archive"
HTTP_OK = 200

supported_formats = ['tar', 'tar.gz', 'tar.bz2']
archive_formats = DatasetList()
for archive_format in supported_formats:
    for wrong_format in supported_formats:
        if archive_format == wrong_format:
            continue
        name = '{}-{}'.format(archive_format, wrong_format)
        archive_formats.append_new_dataset(
            name, {'name': name,
                   'archive_format': archive_format,
                   'wrong_format': wrong_format})


@DataDrivenFixture
class ExtractArchiveFormatParameterTest(ObjectStorageFixture):
    """
    Tests Swfit expand archive operations:
    """
    @classmethod
    def setUpClass(cls):
        super(ExtractArchiveFormatParameterTest, cls).setUpClass()
        cls.default_obj_name = cls.behaviors.VALID_OBJECT_NAME
        cls.data_dir = EngineConfig().data_directory
        cls.no_compression = None
        cls.storage_url = cls.client.storage_url
开发者ID:rgeethapriya,项目名称:cloudroast,代码行数:34,代码来源:extract_archive_format_parameter_test.py

示例14: import

# 需要导入模块: from cafe.drivers.unittest.datasets import DatasetList [as 别名]
# 或者: from cafe.drivers.unittest.datasets.DatasetList import append_new_dataset [as 别名]
limitations under the License.
"""
import os

from cafe.drivers.unittest.datasets import DatasetList
from cafe.drivers.unittest.decorators import (
    DataDrivenFixture, data_driven_test)
from cafe.engine.config import EngineConfig
from cloudcafe.common.tools.md5hash import get_md5_hash
from cloudroast.objectstorage.fixtures import ObjectStorageFixture

BASE_NAME = "extract_archive"
HTTP_OK = 200

archive_formats = DatasetList()
archive_formats.append_new_dataset(
    'tar', {'name': 'tar', 'archive_format': 'tar'})
archive_formats.append_new_dataset(
    'tar.gz', {'name': 'tar.gz', 'archive_format': 'tar.gz'})
archive_formats.append_new_dataset(
    'tar.bz2', {'name': 'tar.bz2', 'archive_format': 'tar.bz2'})


@DataDrivenFixture
class ExtractArchiveTest(ObjectStorageFixture):
    """
    Tests Swfit expand archive operations
    Notes:
    The initial response status code is for initial the request.
    The object extraction status code is sent in the body of the
    response.
    """
开发者ID:rgeethapriya,项目名称:cloudroast,代码行数:34,代码来源:extract_archive_test.py

示例15: DatasetList

# 需要导入模块: from cafe.drivers.unittest.datasets import DatasetList [as 别名]
# 或者: from cafe.drivers.unittest.datasets.DatasetList import append_new_dataset [as 别名]
import unittest

from cafe.drivers.unittest.datasets import DatasetList
from cafe.drivers.unittest.decorators import DataDrivenFixture, \
    data_driven_test, tags
from cloudcafe.networking.networks.config import NetworkingSecondUserConfig
from cloudroast.networking.networks.fixtures \
    import NetworkingSecurityGroupsFixture
from cloudcafe.networking.networks.extensions.security_groups_api.constants \
    import SecurityGroupsErrorTypes, SecurityGroupsResponseCodes


# Creating data sets for data driven testing
data_set_list = DatasetList()
data_set_list.append_new_dataset(
    name='',
    data_dict={},
    tags=['sdn', 'post', 'positive', 'rbac_creator'])
data_set_list.append_new_dataset(
    name='w_protocol_icmp',
    data_dict={'protocol': 'icmp'},
    tags=['periodic', 'post', 'positive', 'rbac_creator'])
data_set_list.append_new_dataset(
    name='w_protocol_tcp',
    data_dict={'protocol': 'tcp'},
    tags=['periodic', 'post', 'positive', 'rbac_creator'])
data_set_list.append_new_dataset(
    name='w_protocol_udp',
    data_dict={'protocol': 'udp'},
    tags=['periodic', 'post', 'positive', 'rbac_creator'])
data_set_list.append_new_dataset(
    name='w_ethertype_ipv4',
开发者ID:Prokop,项目名称:cloud_roast,代码行数:34,代码来源:test_security_group_rules_create.py


注:本文中的cafe.drivers.unittest.datasets.DatasetList.append_new_dataset方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。