本文整理汇总了Python中brian2.Synapses类的典型用法代码示例。如果您正苦于以下问题:Python Synapses类的具体用法?Python Synapses怎么用?Python Synapses使用的例子?那么恭喜您, 这里精选的类代码示例或许可以为您提供帮助。
在下文中一共展示了Synapses类的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: test_store_restore_magic
def test_store_restore_magic():
source = NeuronGroup(10, '''dv/dt = rates : 1
rates : Hz''', threshold='v>1', reset='v=0')
source.rates = 'i*100*Hz'
target = NeuronGroup(10, 'v:1')
synapses = Synapses(source, target, model='w:1', pre='v+=w', connect='i==j')
synapses.w = 'i*1.0'
synapses.delay = 'i*ms'
state_mon = StateMonitor(target, 'v', record=True)
spike_mon = SpikeMonitor(source)
store() # default time slot
run(10*ms)
store('second')
run(10*ms)
v_values = state_mon.v[:, :]
spike_indices, spike_times = spike_mon.it_
restore() # Go back to beginning
assert magic_network.t == 0*ms
run(20*ms)
assert defaultclock.t == 20*ms
assert_equal(v_values, state_mon.v[:, :])
assert_equal(spike_indices, spike_mon.i[:])
assert_equal(spike_times, spike_mon.t_[:])
# Go back to middle
restore('second')
assert magic_network.t == 10*ms
run(10*ms)
assert defaultclock.t == 20*ms
assert_equal(v_values, state_mon.v[:, :])
assert_equal(spike_indices, spike_mon.i[:])
assert_equal(spike_times, spike_mon.t_[:])
示例2: run_network
def run_network(traj):
"""Runs brian network consisting of
200 inhibitory IF neurons"""
eqs = '''
dv/dt=(v0-v)/(5*ms) : volt (unless refractory)
v0 : volt
'''
group = NeuronGroup(100, model=eqs, threshold='v>10 * mV',
reset='v = 0*mV', refractory=5*ms)
group.v0 = traj.par.v0
group.v = np.random.rand(100) * 10.0 * mV
syn = Synapses(group, group, on_pre='v-=1*mV')
syn.connect('i != j', p=0.2)
spike_monitor = SpikeMonitor(group, variables=['v'])
voltage_monitor = StateMonitor(group, 'v', record=True)
pop_monitor = PopulationRateMonitor(group, name='pop' + str(traj.v_idx))
net = Network(group, syn, spike_monitor, voltage_monitor, pop_monitor)
net.run(0.25*second, report='text')
traj.f_add_result(Brian2MonitorResult, 'spikes',
spike_monitor)
traj.f_add_result(Brian2MonitorResult, 'v',
voltage_monitor)
traj.f_add_result(Brian2MonitorResult, 'pop',
pop_monitor)
示例3: test_magic_collect
def test_magic_collect():
'''
Make sure all expected objects are collected in a magic network
'''
P = PoissonGroup(10, rates=100*Hz)
G = NeuronGroup(10, 'v:1')
S = Synapses(G, G, '')
G_runner = G.custom_operation('')
S_runner = S.custom_operation('')
state_mon = StateMonitor(G, 'v', record=True)
spike_mon = SpikeMonitor(G)
rate_mon = PopulationRateMonitor(G)
objects = collect()
assert len(objects) == 8, ('expected %d objects, got %d' % (8, len(objects)))
示例4: do_synapse
def do_synapse(self):
# Maybe should import
from brian2 import Synapses
# Check
if len(self.SynapsingDelayDict) > 0.0:
# map
map(lambda __ItemTuple: self.setDelay(*__ItemTuple), self.SynapsingDelayDict.items())
# debug
"""
self.debug(('self.',self,[
'SynapsingBrianKwargDict'
]))
"""
# init
self.SynapsedBrianVariable = Synapses(**self.SynapsingBrianKwargDict)
# connect
if type(self.SynapsingProbabilityVariable) == float:
# debug
"""
self.debug('we connect with a sparsity of '+str(self.SynapsingProbabilityVariable))
"""
self.SynapsedBrianVariable.connect(True, p=self.SynapsingProbabilityVariable)
# Check
if self.SynapsingWeigthSymbolStr != "":
# debug
"""
self.debug(
('self.',self,[
'SynapsedBrianVariable',
'SynapsingWeigthSymbolStr'
])
)
"""
# connect
self.SynapsedBrianVariable.connect(True)
# get
self.SynapsedWeigthFloatsArray = getattr(self.SynapsedBrianVariable, self.SynapsingWeigthSymbolStr)
# set
self.SynapsedWeigthFloatsArray[:] = np.reshape(
self.SynapsingWeigthFloatsArray,
self.SynapsedBrianVariable.source.N * self.SynapsedBrianVariable.target.N,
)
# debug
self.debug(("self.", self, ["SynapsedWeigthFloatsArray"]))
示例5: create_net
def create_net():
# Use a bit of a complicated spike and connection pattern with
# heterogeneous delays
# Note: it is important that all objects have the same name, this would
# be the case if we were running this in a new process but to not rely
# on garbage collection we will assign explicit names here
source = SpikeGeneratorGroup(5, np.arange(5).repeat(3),
[3, 4, 1, 2, 3, 7, 5, 4, 1, 0, 5, 9, 7, 8, 9]*ms,
name='source')
target = NeuronGroup(10, 'v:1', name='target')
synapses = Synapses(source, target, model='w:1', pre='v+=w', connect='j>=i',
name='synapses')
synapses.w = 'i*1.0 + j*2.0'
synapses.delay = '(5-i)*ms'
state_mon = StateMonitor(target, 'v', record=True, name='statemonitor')
input_spikes = SpikeMonitor(source, name='input_spikes')
net = Network(source, target, synapses, state_mon, input_spikes)
return net
示例6: SynapserClass
class SynapserClass(BaseClass):
def default_init(
self,
_SynapsingBrianKwargDict=None,
_SynapsingProbabilityVariable=None,
_SynapsingTagStr="",
_SynapsingWeigthSymbolStr="",
_SynapsingWeigthFloatsArray=None,
_SynapsingDelayDict=0.0,
_SynapsedBrianVariable=None,
_SynapsedWeigthFloatsArray=None,
_SynapsedCustomOperationStr="",
_SynapsedDelayStateStrsList="",
**_KwargVariablesDict
):
# init
self.PostModelInsertStrsList = []
self.PostModelAddDict = {}
# Call the parent __init__ method
BaseClass.__init__(self, **_KwargVariablesDict)
def setDelay(self, _SymbolStr, _DelayVariable):
# debug
"""
self.debug(
[
"self.SynapsingBrianKwargDict['source'].clock is ",
self.SynapsingBrianKwargDict['source'].clock
]
)
"""
# define
if type(_DelayVariable).__name__ == "Quantity":
# divide
DelayEquationsInt = (int)(_DelayVariable / self.SynapsingBrianKwargDict["source"].clock.dt)
else:
# debug
"""
self.debug(
[
"float of dt is ",
float(
self.SynapsingBrianKwargDict['source'].clock.dt
)
]
)
"""
# divide and put that in ms...(rough)
DelayEquationsInt = (int)(_DelayVariable * 0.001 / float(self.SynapsingBrianKwargDict["source"].clock.dt))
# join
self.SynapsedCustomOperationStr = "\n".join(
map(
lambda __EquationIndexInt: _SymbolStr
+ "_delayer_"
+ str(__EquationIndexInt)
+ "="
+ _SymbolStr
+ "_delayer_"
+ str(__EquationIndexInt - 1),
xrange(DelayEquationsInt, 1, -1),
)
+ [_SymbolStr + "delayer_1=" + _SymbolStr]
)
# debug
self.debug(("self.", self, ["SynapsedCustomOperationStr"]))
# custom
self.SynapsingBrianKwargDict["source"].custom_operation(self.SynapsedCustomOperationStr)
# join
self.SynapsedDelayStateStrsListsList = map(
lambda __EquationIndexInt: _SymbolStr + "_delayer_ : 1", xrange(DelayEquationsInt)
)
# debug
self.debug(("self.", self, ["SynapsedDelayStateStrsList"]))
# add in the PreModelInsertStrsList
if hasattr(self, "AttentionUpdateVariable") == False:
self.AttentionUpdateVariable = {"PreModelInsertStrsList": []}
self.AttentionUpdateVariable["PreModelInsertStrsList"] += self.SynapsedDelayStateStrsListsList
def do_synapse(self):
# Maybe should import
from brian2 import Synapses
# Check
if len(self.SynapsingDelayDict) > 0.0:
#.........这里部分代码省略.........
示例7: simulate_wm
#.........这里部分代码省略.........
Jneg_excit2excit = (1. - Jpos_excit2excit * tmp) / (1. - tmp)
presyn_weight_kernel = \
[(Jneg_excit2excit +
(Jpos_excit2excit - Jneg_excit2excit) *
math.exp(-.5 * (360. * min(j, N_excitatory - j) / N_excitatory) ** 2 / sigma_weight_profile ** 2))
for j in range(N_excitatory)]
# validate the normalization condition: (360./N_excitatory)*sum(presyn_weight_kernel)/360.
fft_presyn_weight_kernel = rfft(presyn_weight_kernel)
weight_profile_45 = deque(presyn_weight_kernel)
rot_dist = int(round(len(weight_profile_45) / 8))
weight_profile_45.rotate(rot_dist)
# define the inhibitory population
inhib_lif_dynamics = """
s_NMDA_total : 1 # the post synaptic sum of s. compare with s_NMDA_presyn
dv/dt = (
- G_leak_inhib * (v-E_leak_inhib)
- G_extern2inhib * s_AMPA * (v-E_AMPA)
- G_inhib2inhib * s_GABA * (v-E_GABA)
- G_excit2inhib * s_NMDA_total * (v-E_NMDA)/(1.0+1.0*exp(-0.062*v/volt)/3.57)
)/Cm_inhib : volt (unless refractory)
ds_AMPA/dt = -s_AMPA/tau_AMPA : 1
ds_GABA/dt = -s_GABA/tau_GABA : 1
"""
inhib_pop = NeuronGroup(
N_inhibitory, model=inhib_lif_dynamics,
threshold="v>v_firing_threshold_inhib", reset="v=v_reset_inhib", refractory=t_abs_refract_inhib,
method="rk2")
# initialize with random voltages:
inhib_pop.v = numpy.random.uniform(v_reset_inhib / b2.mV, high=v_firing_threshold_inhib / b2.mV,
size=N_inhibitory) * b2.mV
# set the connections: inhib2inhib
syn_inhib2inhib = Synapses(inhib_pop, target=inhib_pop, on_pre="s_GABA += 1.0", delay=0.0 * b2.ms)
syn_inhib2inhib.connect(condition="i!=j", p=1.0)
# set the connections: extern2inhib
input_ext2inhib = PoissonInput(target=inhib_pop, target_var="s_AMPA",
N=N_extern_poisson, rate=poisson_firing_rate, weight=1.0)
# specify the excitatory population:
excit_lif_dynamics = """
I_stim : amp
s_NMDA_total : 1 # the post synaptic sum of s. compare with s_NMDA_presyn
dv/dt = (
- G_leak_excit * (v-E_leak_excit)
- G_extern2excit * s_AMPA * (v-E_AMPA)
- G_inhib2excit * s_GABA * (v-E_GABA)
- G_excit2excit * s_NMDA_total * (v-E_NMDA)/(1.0+1.0*exp(-0.062*v/volt)/3.57)
+ I_stim
)/Cm_excit : volt (unless refractory)
ds_AMPA/dt = -s_AMPA/tau_AMPA : 1
ds_GABA/dt = -s_GABA/tau_GABA : 1
ds_NMDA/dt = -s_NMDA/tau_NMDA_s + alpha_NMDA * x * (1-s_NMDA) : 1
dx/dt = -x/tau_NMDA_x : 1
"""
excit_pop = NeuronGroup(N_excitatory, model=excit_lif_dynamics,
threshold="v>v_firing_threshold_excit", reset="v=v_reset_excit; x+=1.0",
refractory=t_abs_refract_excit, method="rk2")
# initialize with random voltages:
excit_pop.v = numpy.random.uniform(v_reset_excit / b2.mV, high=v_firing_threshold_excit / b2.mV,
size=N_excitatory) * b2.mV
excit_pop.I_stim = 0. * b2.namp
# set the connections: extern2excit
input_ext2excit = PoissonInput(target=excit_pop, target_var="s_AMPA",
N=N_extern_poisson, rate=poisson_firing_rate, weight=1.0)
示例8: brianInteraction
#.........这里部分代码省略.........
]
)
"""
# Check
if self.ConnectedToVariable.BrianedNeurongroupVariable == None:
# parent brian
self.ConnectedToVariable.parent().brian()
# set
BrianedNameStr = (
self.BrianedParentPopulationDeriveBrianerVariable.StructureTagStr
+ "_To_"
+ self.ConnectedToVariable.StructureTagStr
)
# debug
"""
self.debug(
[
'We set the synapses',
'self.BrianedParentPopulationDeriveBrianerVariable.BrianedNeurongroupVariable is ',
str(self.BrianedParentPopulationDeriveBrianerVariable.BrianedNeurongroupVariable),
'self.ConnectedToVariable.BrianedNeurongroupVariable is ',
str(self.ConnectedToVariable.BrianedNeurongroupVariable),
'Maybe we have to make brian the post',
'BrianedNameStr is '+BrianedNameStr
]
)
"""
# import
from brian2 import Synapses
# init
self.BrianedSynapsesVariable = Synapses(
source=self.BrianedParentPopulationDeriveBrianerVariable.BrianedNeurongroupVariable,
target=self.ConnectedToVariable.BrianedNeurongroupVariable,
# name=BrianedNameStr.replace('/','_'),
**self.BrianingSynapsesDict
)
# /####################/#
# Connect options
#
# connect
if type(self.BrianingConnectVariable) == float:
# debug
"""
self.debug(
[
'we connect with a sparsity of ',
('self.',self,[
'BrianingConnectVariable'
])
]
)
"""
# connect
self.BrianedSynapsesVariable.connect(True, p=self.BrianingConnectVariable)
# /####################/#
示例9: brianInteraction
#.........这里部分代码省略.........
('self.',self,['ConnectedToVariable'])
]
)
#Check
if self.ConnectedToVariable==None:
#debug
self.debug(
[
'We setConnection here'
]
)
#setConnection
self.setConnection(
self.ManagementTagStr,
self,
self.BrianedParentNeurongroupDeriveBrianerVariable
)
#/####################/#
# Set the BrianedParentNeurongroupDeriveBrianerVariable
#
#debug
self.debug(
[
'Do we have to make parent-brian the connected variable ?',
'self.ConnectedToVariable.BrianedNeurongroupVariable is ',
str(self.ConnectedToVariable.BrianedNeurongroupVariable)
]
)
#Check
if self.ConnectedToVariable.BrianedNeurongroupVariable==None:
#parent brian
self.ConnectedToVariable.parent(
).brian(
)
#set
BrianedNameStr=self.BrianedParentNeurongroupDeriveBrianerVariable.StructureTagStr+'_To_'+self.ConnectedToVariable.StructureTagStr
#debug
self.debug(
[
'We set the synapses',
'self.BrianedParentNeurongroupDeriveBrianerVariable.BrianedNeurongroupVariable is ',
str(self.BrianedParentNeurongroupDeriveBrianerVariable.BrianedNeurongroupVariable),
'self.ConnectedToVariable.BrianedNeurongroupVariable is ',
str(self.ConnectedToVariable.BrianedNeurongroupVariable),
'Maybe we have to make brian the post',
'BrianedNameStr is '+BrianedNameStr
]
)
#import
from brian2 import Synapses
#init
self.BrianedSynapsesVariable=Synapses(
source=self.BrianedParentNeurongroupDeriveBrianerVariable.BrianedNeurongroupVariable,
target=self.ConnectedToVariable.BrianedNeurongroupVariable,
name=BrianedNameStr.replace('/','_'),
**self.BrianingSynapsesDict
)
#/####################/#
# Connect options
#
#connect
if type(self.BrianingConnectVariable)==float:
#debug
self.debug(
[
'we connect with a sparsity of ',
('self.',self,[
'BrianingConnectVariable'
])
]
)
#connect
self.BrianedSynapsesVariable.connect(
True,
p=self.BrianingConnectVariable
)
#/####################/#
# add to the structure
#
#add
self.BrianedParentNetworkDeriveBrianerVariable.BrianedNetworkVariable.add(
self.BrianedSynapsesVariable
)
示例10: do_brian
#.........这里部分代码省略.........
#debug
self.debug(
[
'We make brian the Spikes'
]
)
#Check
if 'Events' in self.TeamDict:
#map
map(
lambda __DeriveBrianer:
__DeriveBrianer.brian(),
self.TeamDict['Events'].ManagementDict.values()
)
#debug
self.debug(
[
'We have made brian the spikes'
]
)
"""
elif self.ParentDeriveTeamerVariable.TeamTagStr=='Postlets':
#debug
self.debug(
[
'It is a Synapser level, we set the Synapser',
('self.',self,[
'BrianingSynapsesDict'
]
),
'self.PointToVariable.BrianedNeurongroupVariable is ',
str(self.PointToVariable.BrianedNeurongroupVariable)
]
)
#/####################/#
# Set the BrianedParentNeurongroupDeriveBrianerVariable
#
#get
self.BrianedParentNeurongroupDeriveBrianerVariable=self.ParentDeriveTeamerVariable.ParentDeriveTeamerVariable
#get
self.BrianedParentNetworkDeriveBrianerVariable=self.BrianedParentNeurongroupDeriveBrianerVariable.BrianedParentNetworkDeriveBrianerVariable
#/####################/#
# Set the BrianedParentNeurongroupDeriveBrianerVariable
#
#import
from brian2 import Synapses
#init
self.BrianedSynapsesVariable=Synapses(
source=self.BrianedParentNeurongroupDeriveBrianerVariable.BrianedNeurongroupVariable,
target=self.PointToVariable.BrianedNeurongroupVariable,
**self.BrianingSynapsesDict
)
示例11: _build_connections
def _build_connections(self, traj, brian_list, network_dict):
"""Connects neuron groups `neurons_i` and `neurons_e`.
Adds all connections to `brian_list` and adds a list of connections
with the key 'connections' to the `network_dict`.
"""
connections = traj.connections
neurons_i = network_dict['neurons_i']
neurons_e = network_dict['neurons_e']
print('Connecting ii')
self.conn_ii = Synapses(neurons_i,neurons_i, on_pre='y_i += %f' % connections.J_ii)
self.conn_ii.connect('i != j', p=connections.p_ii)
print('Connecting ei')
self.conn_ei = Synapses(neurons_i,neurons_e, on_pre='y_i += %f' % connections.J_ei)
self.conn_ei.connect('i != j', p=connections.p_ei)
print('Connecting ie')
self.conn_ie = Synapses(neurons_e,neurons_i, on_pre='y_e += %f' % connections.J_ie)
self.conn_ie.connect('i != j', p=connections.p_ie)
conns_list = [self.conn_ii, self.conn_ei, self.conn_ie]
if connections.R_ee > 1.0:
# If we come here we want to create clusters
cluster_list=[]
cluster_conns_list=[]
model=traj.model
# Compute the number of clusters
clusters = int(model.N_e/connections.clustersize_e)
traj.f_add_derived_parameter('connections.clusters', clusters, comment='Number of clusters')
# Compute outgoing connection probability
p_out = (connections.p_ee*model.N_e) / \
(connections.R_ee*connections.clustersize_e+model.N_e- connections.clustersize_e)
# Compute within cluster connection probability
p_in = p_out * connections.R_ee
# We keep these derived parameters
traj.f_add_derived_parameter('connections.p_ee_in', p_in ,
comment='Connection prob within cluster')
traj.f_add_derived_parameter('connections.p_ee_out', p_out ,
comment='Connection prob to outside of cluster')
low_index = 0
high_index = connections.clustersize_e
# Iterate through cluster and connect within clusters and to the rest of the neurons
for irun in range(clusters):
cluster = neurons_e[low_index:high_index]
# Connections within cluster
print('Connecting ee cluster #%d of %d' % (irun, clusters))
conn = Synapses(cluster,cluster,
on_pre='y_e += %f' % (connections.J_ee*connections.strength_factor))
conn.connect('i != j', p=p_in)
cluster_conns_list.append(conn)
# Connections reaching out from cluster
# A cluster consists of `clustersize_e` neurons with consecutive indices.
# So usually the outside world consists of two groups, neurons with lower
# indices than the cluster indices, and neurons with higher indices.
# Only the clusters at the index boundaries project to neurons with only either
# lower or higher indices
if low_index > 0:
rest_low = neurons_e[0:low_index]
print('Connecting cluster with other neurons of lower index')
low_conn = Synapses(cluster,rest_low,
on_pre='y_e += %f' % connections.J_ee)
low_conn.connect('i != j', p=p_out)
cluster_conns_list.append(low_conn)
if high_index < model.N_e:
rest_high = neurons_e[high_index:model.N_e]
print('Connecting cluster with other neurons of higher index')
high_conn = Synapses(cluster,rest_high,
on_pre='y_e += %f' % connections.J_ee)
high_conn.connect('i != j', p=p_out)
cluster_conns_list.append(high_conn)
low_index=high_index
high_index+=connections.clustersize_e
self.cluster_conns=cluster_conns_list
conns_list+=cluster_conns_list
else:
# Here we don't cluster and connection probabilities are homogeneous
print('Connectiong ee')
#.........这里部分代码省略.........
示例12: CNConnections
#.........这里部分代码省略.........
:param network_dict:
Dictionary of elements shared among the components
Expects:
'neurons_i': Inhibitory neuron group
'neurons_e': Excitatory neuron group
Adds:
Connections, amount depends on clustering
"""
if not hasattr(self, '_pre_build') or not self._pre_build:
self._build_connections(traj, brian_list, network_dict)
def _build_connections(self, traj, brian_list, network_dict):
"""Connects neuron groups `neurons_i` and `neurons_e`.
Adds all connections to `brian_list` and adds a list of connections
with the key 'connections' to the `network_dict`.
"""
connections = traj.connections
neurons_i = network_dict['neurons_i']
neurons_e = network_dict['neurons_e']
print('Connecting ii')
self.conn_ii = Synapses(neurons_i,neurons_i, on_pre='y_i += %f' % connections.J_ii)
self.conn_ii.connect('i != j', p=connections.p_ii)
print('Connecting ei')
self.conn_ei = Synapses(neurons_i,neurons_e, on_pre='y_i += %f' % connections.J_ei)
self.conn_ei.connect('i != j', p=connections.p_ei)
print('Connecting ie')
self.conn_ie = Synapses(neurons_e,neurons_i, on_pre='y_e += %f' % connections.J_ie)
self.conn_ie.connect('i != j', p=connections.p_ie)
conns_list = [self.conn_ii, self.conn_ei, self.conn_ie]
if connections.R_ee > 1.0:
# If we come here we want to create clusters
cluster_list=[]
cluster_conns_list=[]
model=traj.model
# Compute the number of clusters
clusters = int(model.N_e/connections.clustersize_e)
traj.f_add_derived_parameter('connections.clusters', clusters, comment='Number of clusters')
# Compute outgoing connection probability
p_out = (connections.p_ee*model.N_e) / \
(connections.R_ee*connections.clustersize_e+model.N_e- connections.clustersize_e)
# Compute within cluster connection probability
p_in = p_out * connections.R_ee
# We keep these derived parameters
示例13: sim_decision_making_network
#.........这里部分代码省略.........
# define the three excitatory subpopulations.
# A: subpop receiving stimulus A
excit_pop_A = NeuronGroup(N_Group_A, model=excit_lif_dynamics,
threshold="v>v_spike_thr_excit", reset="v=v_reset_excit",
refractory=t_abs_refract_excit, method="rk2")
excit_pop_A.v = rnd.uniform(E_leak_excit / b2.mV, high=E_leak_excit / b2.mV + 5., size=excit_pop_A.N) * b2.mV
# B: subpop receiving stimulus B
excit_pop_B = NeuronGroup(N_Group_B, model=excit_lif_dynamics, threshold="v>v_spike_thr_excit",
reset="v=v_reset_excit", refractory=t_abs_refract_excit, method="rk2")
excit_pop_B.v = rnd.uniform(E_leak_excit / b2.mV, high=E_leak_excit / b2.mV + 5., size=excit_pop_B.N) * b2.mV
# Z: non-sensitive
excit_pop_Z = NeuronGroup(N_Group_Z, model=excit_lif_dynamics,
threshold="v>v_spike_thr_excit", reset="v=v_reset_excit",
refractory=t_abs_refract_excit, method="rk2")
excit_pop_Z.v = rnd.uniform(v_reset_excit / b2.mV, high=v_spike_thr_excit / b2.mV - 1., size=excit_pop_Z.N) * b2.mV
# now define the connections:
# projections FROM EXTERNAL POISSON GROUP: ####################################################
poisson2Inhib = PoissonInput(target=inhib_pop, target_var="s_AMPA",
N=N_extern, rate=firing_rate_extern, weight=w_ext2inhib)
poisson2A = PoissonInput(target=excit_pop_A, target_var="s_AMPA",
N=N_extern, rate=firing_rate_extern, weight=w_ext2excit)
poisson2B = PoissonInput(target=excit_pop_B, target_var="s_AMPA",
N=N_extern, rate=firing_rate_extern, weight=w_ext2excit)
poisson2Z = PoissonInput(target=excit_pop_Z, target_var="s_AMPA",
N=N_extern, rate=firing_rate_extern, weight=w_ext2excit)
###############################################################################################
# GABA projections FROM INHIBITORY population: ################################################
syn_inhib2inhib = Synapses(inhib_pop, target=inhib_pop, on_pre="s_GABA += 1.0", delay=0.5 * b2.ms)
syn_inhib2inhib.connect(p=1.)
syn_inhib2A = Synapses(inhib_pop, target=excit_pop_A, on_pre="s_GABA += 1.0", delay=0.5 * b2.ms)
syn_inhib2A.connect(p=1.)
syn_inhib2B = Synapses(inhib_pop, target=excit_pop_B, on_pre="s_GABA += 1.0", delay=0.5 * b2.ms)
syn_inhib2B.connect(p=1.)
syn_inhib2Z = Synapses(inhib_pop, target=excit_pop_Z, on_pre="s_GABA += 1.0", delay=0.5 * b2.ms)
syn_inhib2Z.connect(p=1.)
###############################################################################################
# AMPA projections FROM EXCITATORY A: #########################################################
syn_AMPA_A2A = Synapses(excit_pop_A, target=excit_pop_A, on_pre="s_AMPA += w_pos", delay=0.5 * b2.ms)
syn_AMPA_A2A.connect(p=1.)
syn_AMPA_A2B = Synapses(excit_pop_A, target=excit_pop_B, on_pre="s_AMPA += w_neg", delay=0.5 * b2.ms)
syn_AMPA_A2B.connect(p=1.)
syn_AMPA_A2Z = Synapses(excit_pop_A, target=excit_pop_Z, on_pre="s_AMPA += 1.0", delay=0.5 * b2.ms)
syn_AMPA_A2Z.connect(p=1.)
syn_AMPA_A2inhib = Synapses(excit_pop_A, target=inhib_pop, on_pre="s_AMPA += 1.0", delay=0.5 * b2.ms)
syn_AMPA_A2inhib.connect(p=1.)
###############################################################################################
# AMPA projections FROM EXCITATORY B: #########################################################
syn_AMPA_B2A = Synapses(excit_pop_B, target=excit_pop_A, on_pre="s_AMPA += w_neg", delay=0.5 * b2.ms)
syn_AMPA_B2A.connect(p=1.)
syn_AMPA_B2B = Synapses(excit_pop_B, target=excit_pop_B, on_pre="s_AMPA += w_pos", delay=0.5 * b2.ms)
syn_AMPA_B2B.connect(p=1.)
syn_AMPA_B2Z = Synapses(excit_pop_B, target=excit_pop_Z, on_pre="s_AMPA += 1.0", delay=0.5 * b2.ms)
syn_AMPA_B2Z.connect(p=1.)
syn_AMPA_B2inhib = Synapses(excit_pop_B, target=inhib_pop, on_pre="s_AMPA += 1.0", delay=0.5 * b2.ms)
syn_AMPA_B2inhib.connect(p=1.)
###############################################################################################
# AMPA projections FROM EXCITATORY Z: #########################################################
示例14: BrianerClass
class BrianerClass(BaseClass):
def default_init(
self,
_BrianingNeurongroupDict=None,
_BrianingSynapsesDict=None,
_BrianingConnectVariable=None,
_BrianingTraceDict=None,
_BrianingMoniterTuple=None,
_BrianingSpikesDict=None,
_BrianingPyplotDict=None,
_BrianingTimeQuantityStr="ms",
_BrianingPyplotBool=True,
_BrianingStepTimeFloat=0.1,
_BrianingDebugVariable=0,
_BrianingRecordBool=True,
_BrianedTimeQuantityVariable=None,
_BrianedNetworkVariable=None,
_BrianedNeurongroupVariable=None,
_BrianedSynapsesVariable=None,
_BrianedStateMonitorVariable=None,
_BrianedSpikeMonitorVariable=None,
_BrianedClockVariable=None,
_BrianedParentSingularStr=None,
_BrianedRecordKeyStrsList=None,
_BrianedTraceDeriveBrianersList=None,
_BrianedSynapsesDeriveBrianersList=None,
_BrianedStateDeriveBrianersList=None,
_BrianedSpikeDeriveBrianersList=None,
_BrianedParentNetworkDeriveBrianerVariable=None,
_BrianedParentPopulationDeriveBrianerVariable=None,
_BrianedParentInteractomeDeriveBrianerVariable=None,
_BrianedParentDeriveRecorderVariable=None,
**_KwargVariablesDict
):
# Call the parent __init__ method
BaseClass.__init__(self, **_KwargVariablesDict)
def do_brian(self):
# /#################/#
# Determine if it is an inside structure or the top
#
# debug
"""
self.debug(
[
'We brian here',
'First look for deeper teams in the structure',
]
)
"""
# Check
if self.ParentedTotalSingularListDict != None and len(self.ParentedTotalSingularListDict) > 0:
# debug
"""
self.debug(
[
'self.ParentedTotalSingularListDict.keys() is ',
str(self.ParentedTotalSingularListDict.keys())
]
)
"""
# get
self.BrianedParentSingularStr = self.ParentedTotalSingularListDict.keys()[0]
# debug
"""
self.debug(
[
'Ok',
('self.',self,[
'BrianedParentSingularStr'
])
]
)
"""
# /########################/#
# Network level
#
# Check
if (
self.ParentDeriveTeamerVariable == None
or "Populations" in self.TeamDict
or self.ParentDeriveTeamerVariable.TeamTagStr
not in ["Clocks", "Traces", "Samples", "Events", "Interactomes", "Interactions"]
) and self.BrianedParentSingularStr != "Population":
# debug
"""
self.debug(
[
'It is a Network level',
'We set the brian network'
#.........这里部分代码省略.........
示例15: simulate_brunel_network
def simulate_brunel_network(
N_Excit=5000,
N_Inhib=None,
N_extern=N_POISSON_INPUT,
connection_probability=CONNECTION_PROBABILITY_EPSILON,
w0=SYNAPTIC_WEIGHT_W0,
g=RELATIVE_INHIBITORY_STRENGTH_G,
synaptic_delay=SYNAPTIC_DELAY,
poisson_input_rate=POISSON_INPUT_RATE,
w_external=None,
v_rest=V_REST,
v_reset=V_RESET,
firing_threshold=FIRING_THRESHOLD,
membrane_time_scale=MEMBRANE_TIME_SCALE,
abs_refractory_period=ABSOLUTE_REFRACTORY_PERIOD,
monitored_subset_size=100,
random_vm_init=False,
sim_time=100.*b2.ms):
"""
Fully parametrized implementation of a sparsely connected network of LIF neurons (Brunel 2000)
Args:
N_Excit (int): Size of the excitatory popluation
N_Inhib (int): optional. Size of the inhibitory population.
If not set (=None), N_Inhib is set to N_excit/4.
N_extern (int): optional. Number of presynaptic excitatory poisson neurons. Note: if set to a value,
this number does NOT depend on N_Excit and NOT depend on connection_probability (this is different
from the book and paper. Only if N_extern is set to 'None', then N_extern is computed as
N_Excit*connection_probability.
connection_probability (float): probability to connect to any of the (N_Excit+N_Inhib) neurons
CE = connection_probability*N_Excit
CI = connection_probability*N_Inhib
Cexternal = N_extern
w0 (float): Synaptic strength J
g (float): relative importance of inhibition. J_exc = w0. J_inhib = -g*w0
synaptic_delay (Quantity): Delay between presynaptic spike and postsynaptic increase of v_m
poisson_input_rate (Quantity): Poisson rate of the external population
w_external (float): optional. Synaptic weight of the excitatory external poisson neurons onto all
neurons in the network. Default is None, in that case w_external is set to w0, which is the
standard value in the book and in the paper Brunel2000.
The purpose of this parameter is to see the effect of external input in the
absence of network feedback(setting w0 to 0mV and w_external>0).
v_rest (Quantity): Resting potential
v_reset (Quantity): Reset potential
firing_threshold (Quantity): Spike threshold
membrane_time_scale (Quantity): tau_m
abs_refractory_period (Quantity): absolute refractory period, tau_ref
monitored_subset_size (int): nr of neurons for which a VoltageMonitor is recording Vm
random_vm_init (bool): if true, the membrane voltage of each neuron is initialized with a
random value drawn from Uniform(v_rest, firing_threshold)
sim_time (Quantity): Simulation time
Returns:
(rate_monitor, spike_monitor, voltage_monitor, idx_monitored_neurons)
PopulationRateMonitor: Rate Monitor
SpikeMonitor: SpikeMonitor for ALL (N_Excit+N_Inhib) neurons
StateMonitor: membrane voltage for a selected subset of neurons
list: index of monitored neurons. length = monitored_subset_size
"""
if N_Inhib is None:
N_Inhib = int(N_Excit/4)
if N_extern is None:
N_extern = int(N_Excit*connection_probability)
if w_external is None:
w_external = w0
J_excit = w0
J_inhib = -g*w0
lif_dynamics = """
dv/dt = -(v-v_rest) / membrane_time_scale : volt (unless refractory)"""
network = NeuronGroup(
N_Excit+N_Inhib, model=lif_dynamics,
threshold="v>firing_threshold", reset="v=v_reset", refractory=abs_refractory_period,
method="linear")
if random_vm_init:
network.v = random.uniform(v_rest/b2.mV, high=firing_threshold/b2.mV, size=(N_Excit+N_Inhib))*b2.mV
else:
network.v = v_rest
excitatory_population = network[:N_Excit]
inhibitory_population = network[N_Excit:]
exc_synapses = Synapses(excitatory_population, target=network, on_pre="v += J_excit", delay=synaptic_delay)
exc_synapses.connect(p=connection_probability)
inhib_synapses = Synapses(inhibitory_population, target=network, on_pre="v += J_inhib", delay=synaptic_delay)
inhib_synapses.connect(p=connection_probability)
external_poisson_input = PoissonInput(target=network, target_var="v", N=N_extern,
rate=poisson_input_rate, weight=w_external)
# collect data of a subset of neurons:
monitored_subset_size = min(monitored_subset_size, (N_Excit+N_Inhib))
idx_monitored_neurons = sample(range(N_Excit+N_Inhib), monitored_subset_size)
rate_monitor = PopulationRateMonitor(network)
# record= some_list is not supported? :-(
spike_monitor = SpikeMonitor(network, record=idx_monitored_neurons)
voltage_monitor = StateMonitor(network, "v", record=idx_monitored_neurons)
#.........这里部分代码省略.........