本文整理汇总了Python中bokeh.models.widgets.TextInput类的典型用法代码示例。如果您正苦于以下问题:Python TextInput类的具体用法?Python TextInput怎么用?Python TextInput使用的例子?那么, 这里精选的类代码示例或许可以为您提供帮助。
在下文中一共展示了TextInput类的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: main
def main(options, args):
logger = log.get_logger("ginga", options=options)
# create a new plot with default tools, using figure
fig = figure(x_range=[0,600], y_range=[0,600], plot_width=600, plot_height=600,
toolbar_location=None)
viewer = ib.CanvasView(logger)
viewer.set_figure(fig)
def load_file(path):
image = AstroImage(logger)
image.load_file(path)
viewer.set_image(image)
def load_file_cb(attr_name, old_val, new_val):
#print(attr_name, old_val, new_val)
load_file(new_val)
# add a entry widget and configure with the call back
dstdir = options.indir
path_w = TextInput(value=dstdir, title="File:")
path_w.on_change('value', load_file_cb)
if len(args) > 0:
load_file(args[0])
# put the path widget and viewer in a layout and add to the document
curdoc().add_root(vplot(fig, path_w))
示例2: make_inputs
def make_inputs(self):
self.ticker1_select = Select(
name='ticker1',
title='Portfolio:',
value='MSFT',
options = ['INTC', 'Tech Basket', 'IBB', 'IGOV']
)
self.ticker2_select = Select(
name='ticker2',
title='Risk/Performance Metric:',
value='Price',
options=['Daily Prices', 'Daily Returns', 'Daily Cum Returns', 'Max DD Percentage', 'Percentage Up Days', 'Rolling 95% VaR', 'Rolling Ann. Volatility', 'Rolling Worst Dly. Loss', 'Ann. Sharpe Ratio']
)
self.ticker3_select = TextInput(
name='ticker3',
title='Window Size:',
value='63'
)
self.ticker4_select = TextInput(
name='ticker4',
title='Start Date:',
value='2010-01-01'
)
self.ticker5_select = TextInput(
name='ticker5',
title='End Date:',
value='2015-08-01'
)
示例3: make_inputs
def make_inputs(self):
self.ticker1_select = TextInput(
name='ticker1',
title='Drift Function:',
value='1.2*(1.1-x)',
)
self.ticker1p_select = TextInput(
name='ticker1p',
title='Drift Derivative:',
value='-1.2',
)
self.ticker2_select = TextInput(
name='ticker2',
title='Volatility Function:',
value='4.0',
)
self.ticker2p_select = TextInput(
name='ticker2p',
title='Volatility Derivative:',
value='0.0',
)
self.ticker3_select = TextInput(
name='ticker3',
title='Number of Paths:',
value='500'
)
self.ticker3_1_select = TextInput(
name='ticker3_1',
title='Number of Points:',
value='252'
)
self.ticker3_2_select = TextInput(
name='ticker3_2',
title='Time Step:',
value='0.01'
)
self.ticker4_select = TextInput(
name='ticker4',
title='Histogram Line:',
value='100'
)
self.ticker4_1_select = TextInput(
name='ticker4_1',
title='Initial Value:',
value='1.01'
)
self.ticker4_2_select = Select(
name='ticker4_2',
title='MC Scheme:',
value='Milstein',
options=['Euler','Milstein', 'Pred/Corr']
)
self.button_select = TextInput(
name='button',
title='Type any word containing "run" to run Simulation ',
value = ''
)
示例4: plot
def plot():
# Set up data
N = 200
x = np.linspace(0, 4*np.pi, N)
y = np.sin(x)
source = ColumnDataSource(data=dict(x=x, y=y))
# Set up plots
plot = Figure(plot_height=400, plot_width=400, title="my sine wave",
tools="crosshair,pan,reset,resize,save,wheel_zoom",
x_range=[0, 4*np.pi], y_range=[-2.5, 2.5])
plot.line('x', 'y', source=source, line_width=3, line_alpha=0.6)
# Set up widgets
text = TextInput(title="title", value='my sine wave')
offset = Slider(title="offset", value=0.0, start=-5.0, end=5.0, step=0.1)
amplitude = Slider(title="amplitude", value=1.0, start=-5.0, end=5.0)
phase = Slider(title="phase", value=0.0, start=0.0, end=2*np.pi)
freq = Slider(title="frequency", value=1.0, start=0.1, end=5.1)
# Set up callbacks
def update_title(attrname, old, new):
plot.title = text.value
text.on_change('value', update_title)
def update_data(attrname, old, new):
# Get the current slider values
a = amplitude.value
b = offset.value
w = phase.value
k = freq.value
# Generate the new curve
x = np.linspace(0, 4*np.pi, N)
y = a*np.sin(k*x + w) + b
source.data = dict(x=x, y=y)
for w in [offset, amplitude, phase, freq]:
w.on_change('value', update_data)
# Set up layouts and add to document
inputs = VBoxForm(children=[text, offset, amplitude, phase, freq])
fullformat = HBox(children=[inputs, plot], width=800)
return fullformat, []
示例5: main
def main(options, args):
logger = log.get_logger("ginga", options=options)
TOOLS = "pan,wheel_zoom,box_select,tap"
# create a new plot with default tools, using figure
fig = figure(x_range=[0,600], y_range=[0,600], plot_width=600, plot_height=600,
tools=TOOLS)
viewer = ib.CanvasView(logger)
viewer.set_figure(fig)
## box_select_tool = fig.select(dict(type=BoxSelectTool))
## box_select_tool.select_every_mousemove = True
#tap_tool = fig.select_one(TapTool).renderers = [cr]
# open a session to keep our local document in sync with server
session = push_session(curdoc())
#curdoc().add_periodic_callback(update, 50)
def load_file(path):
image = AstroImage(logger)
image.load_file(path)
viewer.set_image(image)
def load_file_cb(attr_name, old_val, new_val):
#print(attr_name, old_val, new_val)
load_file(new_val)
# add a entry widget and configure with the call back
dstdir = options.indir
path_w = TextInput(value=dstdir, title="File:")
path_w.on_change('value', load_file_cb)
curdoc().add_root(vplot(fig, path_w))
if len(args) > 0:
load_file(args[0])
# open the document in a browser
session.show()
# run forever
session.loop_until_closed()
示例6: ColumnDataSource
source_point_arc = ColumnDataSource(data=dict(x=[], y=[]))
# initialize controls
# choose between original and arc length parametrization
parametrization_input = CheckboxGroup(labels=['show original parametrization',
'show arc length parametrization'],
active=[0, 1])
parametrization_input.on_click(parametrization_change)
# slider controlling the current parameter t
t_value_input = Slider(title="parameter t", name='parameter t', value=arc_settings.t_value_init,
start=arc_settings.t_value_min, end=arc_settings.t_value_max,
step=arc_settings.t_value_step)
t_value_input.on_change('value', t_value_change)
# text input for the x component of the curve
x_component_input = TextInput(value=arc_settings.x_component_input_msg, title="curve x")
x_component_input.on_change('value', curve_change)
# text input for the y component of the curve
y_component_input = TextInput(value=arc_settings.y_component_input_msg, title="curve y")
y_component_input.on_change('value', curve_change)
# dropdown menu for selecting one of the sample curves
sample_curve_input = Dropdown(label="choose a sample function pair or enter one below",
menu=arc_settings.sample_curve_names)
sample_curve_input.on_click(sample_curve_change)
# initialize plot
toolset = "crosshair,pan,reset,resize,save,wheel_zoom"
# Generate a figure container
plot = Figure(plot_height=400, plot_width=400, tools=toolset,
title="Arc length parametrization",
示例7: Select
acq_period_select = Select(title="Acquisition Period (s):", value="100",
options=[".5","1","10","100","300","1000"])
num_avgs_select = Select(title="Number of Points to Average:", value="100",
options=["100","1000","10000","100000","1000000"])
channel_name_select1 = Select(title='Channel Select:', value="Channel 1",
options =["Channel 1", "Channel 2", "Channel 3", "Channel 4"])
channel_name_select2 = Select(title='Channel Names:', value="Channel 1",
options =["Channel 1", "Channel 2", "Channel 3", "Channel 4"])
number_points_select = Select(title="Number of Points", value="100",
options =["100", "200", "500", "1000", "5000", "10000", "100000", "1000000"])
load_plot_type_select = Select(title="Plot Type:", value="Multi-plot",
options =["Multi-plot", "Pulse Capture Plot"])
# Text inputs
channel_name_input = TextInput(title="Name:")
trigger_level_input = TextInput(value="1", title="Trigger Level (V)")
time_range_input = TextInput(value="1000", title="Time Range (us)")
load_file_input = TextInput(value=home_dir, title="Load file:")
save_filepath_input = TextInput(value=home_dir, title="Save to directory:")
force_save_filename_input = TextInput(value=str(dt.now(PT).year)+"_"+str(dt.now(PT).month)+"_"+str(dt.now(PT).day)+".h5",
title="Save as filename:")
save_filepath_PC_input = TextInput(value=home_dir, title="Save to directory:")
save_filename_PC_input = TextInput(value="PC_"+str(dt.now(PT).year)+"_"+str(dt.now(PT).month)+"_"+str(dt.now(PT).day)+".h5",
title="Save as filename:")
#setup event handlers
all_off_button.on_click(lambda x: allOff_ButtonClick())
all_on_button.on_click(lambda x: allOn_ButtonClick())
reset_button.on_click(lambda x: reset_ButtonClick())
示例8: plot
def plot():
# FIGURES AND X-AXIS
fig1 = Figure(title = 'Energy', plot_width = WIDTH, plot_height = HEIGHT, tools = TOOLS)
timeticks = DatetimeTickFormatter(formats=dict(seconds =["%b%d %H:%M:%S"],
minutes =["%b%d %H:%M"],
hours =["%b%d %H:%M"],
days =["%b%d %H:%M"],
months=["%b%d %H:%M"],
years =["%b%d %H:%M %Y"]))
fig1.xaxis.formatter = timeticks
# INPUT WIDGETS
collection_list = CONN[DB].collection_names(include_system_collections=False)
gliders = sorted([platformID for platformID in collection_list if len(platformID)>2])
gliders = Select(title = 'PlatformID', value = gliders[0], options = gliders)
prev_glider = Button(label = '<')
next_glider = Button(label = '>')
glider_controlbox = HBox(children = [gliders, prev_glider, next_glider])
max_amphr = TextInput(title='Max AmpHrs', value='1040')
deadby_date = TextInput(title='Deadby Date', value='')
data_controlbox = HBox(max_amphr, deadby_date, width = 300)
control_box = HBox(glider_controlbox,
data_controlbox)
# DATA VARS
coulombs_raw = ColumnDataSource(dict(x=[],y=[]))
coulombs_ext = ColumnDataSource(dict(x=[],y=[]))
coulombs_per = ColumnDataSource(dict(x=[],y=[]))
# AXIS setup
fig1.yaxis.axis_label = 'Coulombs (AmpHr)'
fig1.extra_y_ranges = {'usage': Range1d(start=0, end=1200)}
# PLOT OBJECTS
fig1.line( 'x', 'y', source = coulombs_raw, legend = 'm_coulombs_amphr_total', color = 'blue')
fig1.circle('x', 'y', source = coulombs_raw, legend = 'm_coulombs_amphr_total', color = 'blue')
fig1.line( 'x', 'y', source = coulombs_ext, legend = 'projected', color = 'red')
#fig1.cross('x', 'y', source = coulombs_ext, legend = 'projected', size=10, color = 'red')
fig1.renderers.append(Span(name = 'maxamp_span', location = int(max_amphr.value), dimension = 'width', line_color= 'green', line_dash='dashed', line_width=2))
fig1.renderers.append(Span(name = 'maxamp_intersect', location = 1000*time.time(), dimension = 'height', line_color= 'green', line_dash='dashed', line_width=2))
fig1.legend[0].location = 'top_left'
fig1.legend[0].legend_padding = 30
# CALLBACK FUNCS
def update_coulombs(attrib,old,new):
g = gliders.value
coulombs_raw.data = load_sensor(g, 'm_coulomb_amphr_total')
#coulombs_per.data = moving_usage(coulombs_raw.data)
update_projection(None,None,None)
def update_projection(attrib,old,new):
g = gliders.value
try:
fig1.select('maxamp_span')[0].location = int(max_amphr.value)
coulombs_ext.data, deadby_date.value = calc_deadby_date(g, int(max_amphr.value))
fig1.select('maxamp_intersect')[0].location = coulombs_ext.data['x'][-1]
except Exception as e:
print('update_projection error',type(e),e)
#GLIDER SELECTS
def glider_buttons(increment):
ops = gliders.options
new_index = ops.index(gliders.value) + increment
if new_index >= len(ops):
new_index = 0
elif new_index < 0:
new_index = len(ops)-1
gliders.value = ops[new_index]
def next_glider_func():
glider_buttons(1)
def prev_glider_func():
glider_buttons(-1)
gliders.on_change('value', update_coulombs)
next_glider.on_click(next_glider_func)
prev_glider.on_click(prev_glider_func)
max_amphr.on_change('value', update_projection)
update_coulombs(None,None,None)
return vplot(control_box, fig1)
示例9: on_text_value_change
def on_text_value_change(attr, old, new):
try:
global expr
expr = sy.sympify(new, dict(x=xs))
except (sy.SympifyError, TypeError, ValueError) as exception:
dialog.content = str(exception)
dialog.visible = True
else:
update_data()
dialog = Dialog(title="Invalid expression")
slider = Slider(start=1, end=20, value=order, step=1, title="Order", callback_policy="mouseup")
slider.on_change("value", on_slider_value_change)
text = TextInput(value=str(expr), title="Expression:")
text.on_change("value", on_text_value_change)
inputs = WidgetBox(children=[slider, text], width=400)
layout = Column(children=[inputs, plot, dialog])
update_data()
document.add_root(layout)
session.show(layout)
if __name__ == "__main__":
print("\npress ctrl-C to exit")
session.loop_until_closed()
示例10: int
order = int(new)
update_data()
def on_text_value_change(attr, old, new):
try:
global expr
expr = sy.sympify(new, dict(x=xs))
except (sy.SympifyError, TypeError, ValueError) as exception:
dialog.content = str(exception)
dialog.visible = True
else:
update_data()
dialog = Dialog(title="Invalid expression")
slider = Slider(start=1, end=20, value=order, step=1, title="Order:")
slider.on_change('value', on_slider_value_change)
text = TextInput(value=str(expr), title="Expression:")
text.on_change('value', on_text_value_change)
inputs = HBox(children=[slider, text])
layout = VBox(children=[inputs, plot, dialog])
update_data()
document.add_root(layout)
session.show(layout)
if __name__ == "__main__":
print("\npress ctrl-C to exit")
session.loop_until_closed()
示例11: plot
def plot():
# FIGURES AND X-AXIS
fig1 = Figure(title = 'Dive Profile', plot_width = WIDTH, plot_height = HEIGHT, tools = TOOLS)
fig2 = Figure(title = 'Dive Controls', plot_width = WIDTH, plot_height = HEIGHT, tools = TOOLS, x_range=fig1.x_range)
fig3 = Figure(title = 'Attitude', plot_width = WIDTH, plot_height = HEIGHT, tools = TOOLS, x_range=fig1.x_range)
figs = gridplot([[fig1],[fig2],[fig3]])
# Formatting x-axis
timeticks = DatetimeTickFormatter(formats=dict(seconds =["%b%d %H:%M:%S"],
minutes =["%b%d %H:%M"],
hourmin =["%b%d %H:%M"],
hours =["%b%d %H:%M"],
days =["%b%d %H:%M"],
months=["%b%d %H:%M"],
years =["%b%d %H:%M %Y"]))
fig1.xaxis.formatter = timeticks
fig2.xaxis.formatter = timeticks
fig3.xaxis.formatter = timeticks
# removing gridlines
fig1.xgrid.grid_line_color = None
fig1.ygrid.grid_line_color = None
fig2.xgrid.grid_line_color = None
fig2.ygrid.grid_line_color = None
fig3.xgrid.grid_line_color = None
fig3.ygrid.grid_line_color = None
# INPUT WIDGETS
collection_list = CONN[DB].collection_names(include_system_collections=False)
gliders = sorted([platformID for platformID in collection_list if len(platformID)>2])
gliders = Select(title = 'PlatformID', value = gliders[0], options = gliders)
prev_glider = Button(label = '<')
next_glider = Button(label = '>')
glider_controlbox = HBox(children = [gliders, prev_glider, next_glider], height=80)
chunkations = Select(title = 'Chunkation', value = 'segment', options = ['segment', '24hr', '30days', '-ALL-'])
chunk_indicator = TextInput(title = 'index', value = '0')
prev_chunk = Button(label = '<')
next_chunk = Button(label = '>')
chunk_ID = PreText(height=80)
chunk_controlbox = HBox(chunkations,
HBox(chunk_indicator, width=25),
prev_chunk, next_chunk,
chunk_ID,
height = 80)
control_box = HBox(glider_controlbox,
chunk_controlbox)
# DATA VARS
deadby_date = ''
depth = ColumnDataSource(dict(x=[],y=[]))
vert_vel = ColumnDataSource(dict(x=[],y=[]))
mbpump = ColumnDataSource(dict(x=[],y=[]))
battpos = ColumnDataSource(dict(x=[],y=[]))
pitch = ColumnDataSource(dict(x=[],y=[]))
mfin = ColumnDataSource(dict(x=[],y=[]))
cfin = ColumnDataSource(dict(x=[],y=[]))
mroll = ColumnDataSource(dict(x=[],y=[]))
mheading = ColumnDataSource(dict(x=[],y=[]))
cheading = ColumnDataSource(dict(x=[],y=[]))
# AXIS setup
colors = COLORS[:]
fig1.y_range.flipped = True
fig1.yaxis.axis_label = 'm_depth (m)'
fig1.extra_y_ranges = {'vert_vel': Range1d(start=-50, end=50),
'dummy': Range1d(start=0, end=100)}
fig1.add_layout(place = 'right',
obj = LinearAxis(y_range_name = 'vert_vel',
axis_label = 'vertical velocity (cm/s)'))
fig1.add_layout(place = 'left',
obj = LinearAxis(y_range_name = 'dummy',
axis_label = ' '))
fig1.yaxis[1].visible = False
fig1.yaxis[1].axis_line_alpha = 0
fig1.yaxis[1].major_label_text_alpha = 0
fig1.yaxis[1].major_tick_line_alpha = 0
fig1.yaxis[1].minor_tick_line_alpha = 0
fig2.yaxis.axis_label = 'pitch (deg)'
fig2.y_range.start, fig2.y_range.end = -40,40
fig2.extra_y_ranges = {'battpos': Range1d(start=-1, end = 1),
'bpump': Range1d(start=-275, end=275)}
fig2.add_layout(place = 'right',
obj = LinearAxis(y_range_name = 'battpos',
axis_label = 'battpos (in)'))
fig2.add_layout(place = 'left',
obj = LinearAxis(y_range_name = 'bpump',
axis_label = 'bpump (cc)'))
fig2.yaxis[1].visible = False # necessary for spacing. later gets set to true
fig3.yaxis.axis_label = 'fin/roll (deg)'
fig3.y_range.start, fig3.y_range.end = -30, 30
#.........这里部分代码省略.........
示例12: g
# Plot constraint function contour g(x,y)=0
contour_g = my_bokeh_utils.Contour(plot, line_color='red', line_width=2, legend='g(x,y) = 0')
# Plot corresponding tangent vector
quiver_isolevel = my_bokeh_utils.Quiver(plot, fix_at_middle=False, line_width=2, color='black')
# Plot corresponding tangent vector
quiver_constraint = my_bokeh_utils.Quiver(plot, fix_at_middle=False, line_width=2, color='red')
# Plot mark at position on constraint function
plot.cross(x='x', y='y', color='red', size=10, line_width=2, source=source_mark)
# object that detects, if a position in the plot is clicked on
interactor = my_bokeh_utils.Interactor(plot)
# adds callback function to interactor, if position in plot is clicked, call on_selection_change
interactor.on_click(on_selection_change)
# text input window for objective function f(x,y) to be optimized
f_input = TextInput(value=lagrange_settings.f_init, title="f(x,y):")
f_input.on_change('value', f_changed)
# dropdown menu for selecting one of the sample functions
sample_fun_input_f = Dropdown(label="choose a sample function f(x,y) or enter one below",
menu=lagrange_settings.sample_f_names)
sample_fun_input_f.on_click(sample_fun_input_f_changed)
# text input window for side condition g(x,y)=0
g_input = TextInput(value=lagrange_settings.g_init, title="g(x,y):")
g_input.on_change('value', g_changed)
# dropdown menu for selecting one of the sample functions
sample_fun_input_g = Dropdown(label="choose a sample function g(x,y) or enter one below",
menu=lagrange_settings.sample_g_names)
sample_fun_input_g.on_click(sample_fun_input_g_changed)
示例13: compare
#.........这里部分代码省略.........
p = figure(plot_width=DIM_COMP_W, plot_height=DIM_COMP_H, tools=TOOLS,
title=None, logo=None, toolbar_location="above",
x_range=Range1d(minx, maxx), y_range=Range1d(miny, maxy),
x_axis_type="log", y_axis_type="log"
)
pb = figure(plot_width=DIM_COMP_SM, plot_height=DIM_COMP_H, tools=TOOLS,
y_range=p.y_range, x_axis_type="log", y_axis_type="log")
pa = figure(plot_width=DIM_COMP_W, plot_height=DIM_COMP_SM, tools=TOOLS,
x_range=p.x_range, x_axis_type="log", y_axis_type="log")
pp = figure(plot_width=DIM_COMP_SM, plot_height=DIM_COMP_SM,
tools=TOOLS, outline_line_color=None)
# SPANS
p.add_layout(plot_fns.get_span(1, 'height'))
p.add_layout(plot_fns.get_span(1, 'width'))
pa.add_layout(plot_fns.get_span(1, 'height'))
pb.add_layout(plot_fns.get_span(1, 'width'))
# STYLE
for ax in [p, pa, pb]:
ax.grid.visible = False
ax.outline_line_width = 2
ax.background_fill_color = 'whitesmoke'
for ax in [pa, pb]:
ax.xaxis.visible = False
ax.yaxis.visible = False
pa.title.text = xlabel
pb.title.text = ylabel
pa.title_location, pa.title.align = 'below', 'center'
pb.title_location, pb.title.align = 'left', 'center'
# WIDGETS
q_input = TextInput(value='', title="P* cutoff",
placeholder='e.g. 0.05')
gene_input = TextInput(value='', title="Gene list",
placeholder='e.g. TP53,BRAF')
radio_include = RadioGroup(labels=["Include", "Exclude"], active=0)
widgets = widgetbox(q_input, gene_input, radio_include, width=200,
css_classes=['widgets_sg'])
grid = gridplot([[pb, p, widgets],
[Spacer(width=DIM_COMP_SM), pa, Spacer()]],
sizing_mode='fixed')
cb_inclusion = CustomJS(args=dict(genes=gene_input), code="""
var gene_str = genes.value
if (!gene_str)
return;
var include = cb_obj.active == 0 ? true : false
selectPathwaysByGenes(gene_str, include);
""")
cb_genes = CustomJS(args=dict(radio=radio_include), code="""
var gene_str = cb_obj.value
if (!gene_str)
return;
var include = radio.active == 0 ? true : false
selectPathwaysByGenes(gene_str, include);
""")
radio_include.js_on_change('active', cb_inclusion)
gene_input.js_on_change('value', cb_genes)
# SCATTER
p.circle("e1", "e2", source=source, **SCATTER_KW)
pa.circle('e1_only', 1, source=source, **SCATTER_KW)
pb.circle(1, 'e2_only', source=source, **SCATTER_KW)
示例14: plotting
def plotting(self):
#Tools = [hover, TapTool(), BoxZoomTool(), BoxSelectTool(), PreviewSaveTool(), ResetTool()]
TOOLS="crosshair,pan,wheel_zoom,box_zoom,reset,hover,previewsave"
tab_plots = []
#output_file("test.html")
self.all_elements = []
self.elements_comparison = []
for attr_id, i in zip(self.attribute_ids, range(len(self.attribute_ids))):
"""
create plots for each datafile and put them in a tab.
"""
list_of_datasets = getattr(self, attr_id)
y_axis_units = [x["y_unit"] for x in list_of_datasets]
x_axis_units = [x["x_unit"] for x in list_of_datasets]
figure_obj = figure(plot_width = 1000, plot_height = 800, y_axis_type = "log",
title = attr_id, tools = TOOLS)
#figure_obj.axes.major_label_text_font_size("12pt")
#figure_obj.major_label_text_font_size("12pt")
setattr(self, attr_id+"_"+"figure_obj",figure_obj)
figure_obj.yaxis.axis_label = y_axis_units[0]
figure_obj.xaxis.axis_label = x_axis_units[0]
if not all(x == y_axis_units[0] for x in y_axis_units):
for unit, data in zip(y_axis_units, list_of_datasets):
if not unit == y_axis_units[0]:
figure_obj.extra_y_ranges = {"foo": Range1d(start = np.amin(data["data"]["y"]),
end = np.amax(data["data"]["y"]))}
figure_obj.add_layout(LogAxis(y_range_name = "foo", axis_label = unit), "right")
break
if not all(x == x_axis_units[0] for x in x_axis_units):
for unit, data in zip(x_axis_units, list_of_datasets):
if not unit == x_axis_units[0]:
figure_obj.extra_x_ranges = {"bar": Range1d(start = np.amin(data["data"]["x"]),
end = np.amax(data["data"]["x"]))}
figure_obj.add_layout(LinearAxis(x_range_name = "bar", axis_label = unit), "above")
break
figure_obj.xaxis.axis_label = list_of_datasets[0]["x_unit"]
colour_list = Spectral11 + RdPu9 + Oranges9
colour_indices = [0, 2, 8, 10, 12, 14, 20, 22, 1, 3, 9, 11, 13, 15]
list_of_elements = []
for dataset, color_index in zip(list_of_datasets, colour_indices):
self.all_elements.append(dataset["sample element"]) #strip isotope number
color = colour_list[color_index]
source = ColumnDataSource(data = dataset["data"]) #Datastructure for source of plotting
setattr(self, attr_id+"_"+dataset["sample element"]+"_source", source) #Source element generalized for all plotting
list_of_elements.append(dataset["sample element"])
figure_obj.line("x", "y", source = getattr(self, attr_id+"_"+dataset["sample element"]
+"_source"), line_width = 2, line_color = color,
legend = dataset["sample element"], name = dataset["sample element"],
)
hover = figure_obj.select_one(HoverTool).tooltips = [("element", "@element"), ("(x,y)", "($x, $y)")]
radio_group = RadioGroup(labels = list_of_elements, active=0)
"""
Need to fetch default variables from input file and replace DEFAULT
Block of code produces the layout of buttons and callbacks
"""
#Calculations on the dataset
text_input_rsf = TextInput(value = "default", title = "RSF (at/cm^3): ")
do_integral_button = Button(label = "Calibration Integral")
smoothing_button = Button(label = "Smoothing on selected curve")
text_input_sputter = TextInput(value = "default", title = "Sputter speed: float unit")
text_input_crater_depth = TextInput(value = "default", title = "Depth of crater in: float")
radio_group.on_change("active", lambda attr, old, new: None)
text_input_xval_integral = TextInput(value = "0", title = "x-value for calibration integral ")
text_input_yval_integral = TextInput(value = "0", title = "y-value for calibration integral ")
#Save files for later use
save_flexDPE_button = Button(label = "Save element for FlexPDE")
#.........这里部分代码省略.........
示例15: Button
'lws':[2]
}
))
circobs = p.circle(x='xs', y='ys', color='colors',
source=ColumnDataSource(data=
{
'xs':[[]],
'ys':[[]],
'colors':['white'],
}
))
# add a button widget and configure with the call back
button = Button(label="Fetch Data")
namefield = TextInput(value="", title="Name(s):")
bandfield = TextInput(value="", title="Band(s):")
# add a text renderer to out plot (no data yet)
with open('/root/astrocats/astrocats/supernovae/output/names.min.json') as f:
names = json.loads(f.read())
names = list(names.keys())
unames = [x.upper() for x in names]
bands = plotting.bandcodes
ubands = [x.upper() for x in bands]
nds = []
def callback():