本文整理汇总了Python中blocks.search.BeamSearch类的典型用法代码示例。如果您正苦于以下问题:Python BeamSearch类的具体用法?Python BeamSearch怎么用?Python BeamSearch使用的例子?那么, 这里精选的类代码示例或许可以为您提供帮助。
在下文中一共展示了BeamSearch类的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: test_beam_search
def test_beam_search():
"""Test beam search using the model from the reverse_words demo.
Ideally this test should be done with a trained model, but so far
only with a randomly initialized one. So it does not really test
the ability to find the best output sequence, but only correctness
of returned costs.
"""
rng = numpy.random.RandomState(1234)
alphabet_size = 20
beam_size = 10
length = 15
reverser = WordReverser(10, alphabet_size)
reverser.weights_init = reverser.biases_init = IsotropicGaussian(0.5)
reverser.initialize()
inputs = tensor.lmatrix('inputs')
samples, = VariableFilter(bricks=[reverser.generator], name="outputs")(
ComputationGraph(reverser.generate(inputs)))
input_vals = numpy.tile(rng.randint(alphabet_size, size=(length,)),
(beam_size, 1)).T
search = BeamSearch(10, samples)
results, mask, costs = search.search({inputs: input_vals},
0, 3 * length)
true_costs = reverser.cost(
input_vals, numpy.ones((length, beam_size), dtype=floatX),
results, mask).eval()
true_costs = (true_costs * mask).sum(axis=0)
assert_allclose(costs, true_costs, rtol=1e-5)
示例2: test_beam_search
def test_beam_search():
"""Test beam search using the model similar to the reverse_words demo.
Ideally this test should be done with a trained model, but so far
only with a randomly initialized one. So it does not really test
the ability to find the best output sequence, but only correctness
of returned costs.
"""
rng = numpy.random.RandomState(1234)
alphabet_size = 20
beam_size = 10
length = 15
simple_generator = SimpleGenerator(10, alphabet_size, seed=1234)
simple_generator.weights_init = IsotropicGaussian(0.5)
simple_generator.biases_init = IsotropicGaussian(0.5)
simple_generator.initialize()
inputs = tensor.lmatrix('inputs')
samples, = VariableFilter(
applications=[simple_generator.generator.generate],
name="outputs")(
ComputationGraph(simple_generator.generate(inputs)))
input_vals = numpy.tile(rng.randint(alphabet_size, size=(length,)),
(beam_size, 1)).T
search = BeamSearch(samples)
results, mask, costs = search.search(
{inputs: input_vals}, 0, 3 * length, as_arrays=True)
# Just check sum
assert results.sum() == 2816
true_costs = simple_generator.cost(
input_vals, numpy.ones((length, beam_size),
dtype=theano.config.floatX),
results, mask).eval()
true_costs = (true_costs * mask).sum(axis=0)
assert_allclose(costs.sum(axis=0), true_costs, rtol=1e-5)
# Test `as_lists=True`
results2, costs2 = search.search({inputs: input_vals},
0, 3 * length)
for i in range(len(results2)):
assert results2[i] == list(results.T[i, :mask.T[i].sum()])
示例3: generate
def generate(input_):
"""Generate output sequences for an input sequence.
Incapsulates most of the difference between sampling and beam
search.
Returns
-------
outputs : list of lists
Trimmed output sequences.
costs : list
The negative log-likelihood of generating the respective
sequences.
"""
if mode == "beam_search":
samples, = VariableFilter(
bricks=[reverser.generator], name="outputs")(
ComputationGraph(generated[1]))
# NOTE: this will recompile beam search functions
# every time user presses Enter. Do not create
# a new `BeamSearch` object every time if
# speed is important for you.
beam_search = BeamSearch(input_.shape[1], samples)
outputs, _, costs = beam_search.search(
{chars: input_}, char2code['</S>'],
3 * input_.shape[0])
else:
_1, outputs, _2, _3, costs = (
model.get_theano_function()(input_))
costs = costs.T
outputs = list(outputs.T)
costs = list(costs)
for i in range(len(outputs)):
outputs[i] = list(outputs[i])
try:
true_length = outputs[i].index(char2code['</S>']) + 1
except ValueError:
true_length = len(outputs[i])
outputs[i] = outputs[i][:true_length]
if mode == "sample":
costs[i] = costs[i][:true_length].sum()
return outputs, costs
示例4: __init__
def __init__(self, eol_symbol, beam_size, x, x_mask, samples,
phoneme_dict=None, black_list=None, language_model=False):
if black_list is None:
self.black_list = []
else:
self.black_list = black_list
self.x = x
self.x_mask = x_mask
self.eol_symbol = eol_symbol
self.beam_size = beam_size
if language_model:
lm = TrigramLanguageModel()
ind_to_word = dict(enumerate(lm.unigrams))
self.beam_search = BeamSearchLM(
lm, 1., ind_to_word, beam_size, samples)
else:
self.beam_search = BeamSearch(beam_size, samples)
self.beam_search.compile()
self.phoneme_dict = phoneme_dict
示例5: __init__
def __init__(
self,
source_sentence,
samples,
model,
data_stream,
config,
n_best=1,
track_n_models=1,
trg_ivocab=None,
src_eos_idx=-1,
trg_eos_idx=-1,
**kwargs
):
super(BleuValidator, self).__init__(**kwargs)
self.source_sentence = source_sentence
self.samples = samples
self.model = model
self.data_stream = data_stream
self.config = config
self.n_best = n_best
self.track_n_models = track_n_models
self.verbose = config.get("val_set_out", None)
self.src_eos_idx = src_eos_idx
self.trg_eos_idx = trg_eos_idx
# Helpers
self.vocab = data_stream.dataset.dictionary
self.trg_ivocab = trg_ivocab
self.unk_sym = data_stream.dataset.unk_token
self.eos_sym = data_stream.dataset.eos_token
self.unk_idx = self.vocab[self.unk_sym]
self.eos_idx = self.src_eos_idx # self.vocab[self.eos_sym]
self.best_models = []
self.val_bleu_curve = []
self.beam_search = BeamSearch(beam_size=self.config["beam_size"], samples=samples)
self.multibleu_cmd = ["perl", self.config["bleu_script"], self.config["val_set_grndtruth"], "<"]
# Create saving directory if it does not exist
if not os.path.exists(self.config["saveto"]):
os.makedirs(self.config["saveto"])
if self.config["reload"]:
try:
bleu_score = numpy.load(os.path.join(self.config["saveto"], "val_bleu_scores.npz"))
self.val_bleu_curve = bleu_score["bleu_scores"].tolist()
# Track n best previous bleu scores
for i, bleu in enumerate(sorted(self.val_bleu_curve, reverse=True)):
if i < self.track_n_models:
self.best_models.append(ModelInfo(bleu))
logger.info("BleuScores Reloaded")
except:
logger.info("BleuScores not Found")
示例6: __init__
def __init__(self, eol_symbol, beam_size, x, x_mask, samples,
phoneme_dict=None, black_list=None):
if black_list is None:
self.black_list = []
else:
self.black_list = black_list
self.x = x
self.x_mask = x_mask
self.eol_symbol = eol_symbol
self.beam_size = beam_size
self.beam_search = BeamSearch(beam_size, samples)
self.beam_search.compile()
self.phoneme_dict = phoneme_dict
示例7: init_beam_search
def init_beam_search(self, beam_size):
"""Compile beam search and set the beam size.
See Blocks issue #500.
"""
self.beam_size = beam_size
generated = self.get_generate_graph()
samples, = VariableFilter(
applications=[self.generator.generate], name="outputs")(
ComputationGraph(generated['outputs']))
self._beam_search = BeamSearch(beam_size, samples)
self._beam_search.compile()
示例8: __init__
def __init__(self, source_sentence, samples, model, data_stream,
config, n_best=1, track_n_models=1, trg_ivocab=None,
normalize=True, store_full_main_loop=False, **kwargs):
# TODO: change config structure
super(BleuValidator, self).__init__(**kwargs)
self.store_full_main_loop = store_full_main_loop
self.source_sentence = source_sentence
self.samples = samples
self.model = model
self.data_stream = data_stream
self.config = config
self.n_best = n_best
self.track_n_models = track_n_models
self.normalize = normalize
self.verbose = config.get('val_set_out', None)
# Helpers
#self.vocab = data_stream.dataset.dictionary
self.trg_ivocab = trg_ivocab
#self.unk_sym = data_stream.dataset.unk_token
#self.eos_sym = data_stream.dataset.eos_token
#self.unk_idx = self.vocab[self.unk_sym]
#self.eos_idx = self.vocab[self.eos_sym]
self.unk_idx = 0 # fs439: TODO hardcoded
self.eos_idx = 2 # fs439: TODO hardcoded
self.best_models = []
self.val_bleu_curve = []
self.beam_search = BeamSearch(samples=samples)
self.multibleu_cmd = (self.config['bleu_script'] % self.config['val_set_grndtruth']).split()
print("BLEU command: %s" % self.multibleu_cmd)
# Create saving directory if it does not exist
if not os.path.exists(self.config['saveto']):
os.makedirs(self.config['saveto'])
if self.config['reload']:
try:
bleu_score = numpy.load(os.path.join(self.config['saveto'],
'val_bleu_scores.npz'))
self.val_bleu_curve = bleu_score['bleu_scores'].tolist()
# Track n best previous bleu scores
for i, bleu in enumerate(
sorted(self.val_bleu_curve, reverse=True)):
if i < self.track_n_models:
self.best_models.append(ModelInfo(bleu))
logger.info("BleuScores Reloaded")
except:
logger.info("BleuScores not Found")
示例9: set_up_decoder
def set_up_decoder(self, nmt_model_path):
"""This method uses the NMT configuration in ``self.config`` to
initialize the NMT model. This method basically corresponds to
``blocks.machine_translation.main``.
Args:
nmt_model_path (string): Path to the NMT model file (.npz)
"""
self.nmt_model = NMTModel(self.config)
self.nmt_model.set_up()
loader = LoadNMTUtils(nmt_model_path,
self.config['saveto'],
self.nmt_model.search_model)
loader.load_weights()
self.src_sparse_feat_map = self.config['src_sparse_feat_map'] \
if self.config['src_sparse_feat_map'] else FlatSparseFeatMap()
if self.config['trg_sparse_feat_map']:
self.trg_sparse_feat_map = self.config['trg_sparse_feat_map']
self.beam_search = SparseBeamSearch(
samples=self.nmt_model.samples,
trg_sparse_feat_map=self.trg_sparse_feat_map)
else:
self.trg_sparse_feat_map = FlatSparseFeatMap()
self.beam_search = BeamSearch(samples=self.nmt_model.samples)
示例10: init_beam_search
def init_beam_search(self, beam_size):
"""Compile beam search and set the beam size.
See Blocks issue #500.
"""
if hasattr(self, '_beam_search') and self.beam_size == beam_size:
# Only recompile if the user wants a different beam size
return
self.beam_size = beam_size
generated = self.get_generate_graph(use_mask=False, n_steps=3)
cg = ComputationGraph(generated.values())
samples, = VariableFilter(
applications=[self.generator.generate], name="outputs")(cg)
self._beam_search = BeamSearch(beam_size, samples)
self._beam_search.compile()
示例11: __init__
def __init__(self, source_sentence, samples, model, data_stream, ground_truth, config,
val_out=None, val_best_out=None, n_best=1, normalize=True, **kwargs):
# TODO: change config structure
super(BleuEvaluator, self).__init__(**kwargs)
self.source_sentence = source_sentence
self.samples = samples
self.model = model
self.data_stream = data_stream
self.config = config
self.n_best = n_best
self.normalize = normalize
self.val_out = val_out
self.val_best_out = val_out and val_best_out
self.bleu_scores = []
self.trg_ivocab = None
self.unk_id = config['unk_id']
self.eos_id = config['eos_id']
self.beam_search = BeamSearch(samples=samples)
self.multibleu_cmd = ['perl', self.config['bleu_script'], ground_truth, '<']
示例12: BleuValidator
class BleuValidator(SimpleExtension, SamplingBase):
def __init__(
self,
source_sentence,
samples,
model,
data_stream,
config,
n_best=1,
track_n_models=1,
trg_ivocab=None,
src_eos_idx=-1,
trg_eos_idx=-1,
**kwargs
):
super(BleuValidator, self).__init__(**kwargs)
self.source_sentence = source_sentence
self.samples = samples
self.model = model
self.data_stream = data_stream
self.config = config
self.n_best = n_best
self.track_n_models = track_n_models
self.verbose = config.get("val_set_out", None)
self.src_eos_idx = src_eos_idx
self.trg_eos_idx = trg_eos_idx
# Helpers
self.vocab = data_stream.dataset.dictionary
self.trg_ivocab = trg_ivocab
self.unk_sym = data_stream.dataset.unk_token
self.eos_sym = data_stream.dataset.eos_token
self.unk_idx = self.vocab[self.unk_sym]
self.eos_idx = self.src_eos_idx # self.vocab[self.eos_sym]
self.best_models = []
self.val_bleu_curve = []
self.beam_search = BeamSearch(beam_size=self.config["beam_size"], samples=samples)
self.multibleu_cmd = ["perl", self.config["bleu_script"], self.config["val_set_grndtruth"], "<"]
# Create saving directory if it does not exist
if not os.path.exists(self.config["saveto"]):
os.makedirs(self.config["saveto"])
if self.config["reload"]:
try:
bleu_score = numpy.load(os.path.join(self.config["saveto"], "val_bleu_scores.npz"))
self.val_bleu_curve = bleu_score["bleu_scores"].tolist()
# Track n best previous bleu scores
for i, bleu in enumerate(sorted(self.val_bleu_curve, reverse=True)):
if i < self.track_n_models:
self.best_models.append(ModelInfo(bleu))
logger.info("BleuScores Reloaded")
except:
logger.info("BleuScores not Found")
def do(self, which_callback, *args):
# Track validation burn in
if self.main_loop.status["iterations_done"] <= self.config["val_burn_in"]:
return
# Get current model parameters
self.model.set_param_values(self.main_loop.model.get_param_values())
# Evaluate and save if necessary
self._save_model(self._evaluate_model())
def _evaluate_model(self):
logger.info("Started Validation: ")
val_start_time = time.time()
mb_subprocess = Popen(self.multibleu_cmd, stdin=PIPE, stdout=PIPE)
total_cost = 0.0
# Get target vocabulary
if not self.trg_ivocab:
sources = self._get_attr_rec(self.main_loop, "data_stream")
trg_vocab = sources.data_streams[1].dataset.dictionary
self.trg_ivocab = {v: k for k, v in trg_vocab.items()}
if self.verbose:
ftrans = open(self.config["val_set_out"], "w")
for i, line in enumerate(self.data_stream.get_epoch_iterator()):
"""
Load the sentence, retrieve the sample, write to file
"""
line[0][-1] = self.src_eos_idx
seq = self._oov_to_unk(line[0])
input_ = numpy.tile(seq, (self.config["beam_size"], 1))
# draw sample, checking to ensure we don't get an empty string back
trans, costs = self.beam_search.search(
input_values={self.source_sentence: input_},
max_length=3 * len(seq),
eol_symbol=self.trg_eos_idx,
ignore_first_eol=True,
#.........这里部分代码省略.........
示例13: SpeechRecognizer
#.........这里部分代码省略.........
prediction_variable = tensor.lvector('prediction')
if prediction is not None:
input_variables.append(prediction_variable)
cg = self.get_cost_graph(
batch=False, prediction=prediction_variable[:, None])
else:
cg = self.get_cost_graph(batch=False)
cost = cg.outputs[0]
weights, = VariableFilter(
bricks=[self.generator], name="weights")(cg)
energies = VariableFilter(
bricks=[self.generator], name="energies")(cg)
energies_output = [energies[0][:, 0, :] if energies
else tensor.zeros_like(weights)]
states, = VariableFilter(
applications=[self.encoder.apply], roles=[OUTPUT],
name="encoded")(cg)
ctc_matrix_output = []
# Temporarily disabled for compatibility with LM code
# if len(self.generator.readout.source_names) == 1:
# ctc_matrix_output = [
# self.generator.readout.readout(weighted_averages=states)[:, 0, :]]
self._analyze = theano.function(
input_variables,
[cost[:, 0], weights[:, 0, :]] + energies_output + ctc_matrix_output,
on_unused_input='warn')
return self._analyze(**input_values_dict)
def init_beam_search(self, beam_size):
"""Compile beam search and set the beam size.
See Blocks issue #500.
"""
if hasattr(self, '_beam_search') and self.beam_size == beam_size:
# Only recompile if the user wants a different beam size
return
self.beam_size = beam_size
generated = self.get_generate_graph(use_mask=False, n_steps=3)
cg = ComputationGraph(generated.values())
samples, = VariableFilter(
applications=[self.generator.generate], name="outputs")(cg)
self._beam_search = BeamSearch(beam_size, samples)
self._beam_search.compile()
def beam_search(self, inputs, **kwargs):
# When a recognizer is unpickled, self.beam_size is available
# but beam search has to be recompiled.
self.init_beam_search(self.beam_size)
inputs = dict(inputs)
max_length = int(self.bottom.num_time_steps(**inputs) /
self.max_decoded_length_scale)
search_inputs = {}
for var in self.inputs.values():
search_inputs[var] = inputs.pop(var.name)[:, numpy.newaxis, ...]
if inputs:
raise Exception(
'Unknown inputs passed to beam search: {}'.format(
inputs.keys()))
outputs, search_costs = self._beam_search.search(
search_inputs, self.eos_label,
max_length,
ignore_first_eol=self.data_prepend_eos,
**kwargs)
return outputs, search_costs
def init_generate(self):
generated = self.get_generate_graph(use_mask=False)
cg = ComputationGraph(generated['outputs'])
self._do_generate = cg.get_theano_function()
def sample(self, inputs, n_steps=None):
if not hasattr(self, '_do_generate'):
self.init_generate()
batch, unused_mask = self.bottom.single_to_batch_inputs(inputs)
batch['n_steps'] = n_steps if n_steps is not None \
else int(self.bottom.num_time_steps(**batch) /
self.max_decoded_length_scale)
return self._do_generate(**batch)[0]
def __getstate__(self):
state = dict(self.__dict__)
for attr in ['_analyze', '_beam_search']:
state.pop(attr, None)
return state
def __setstate__(self, state):
self.__dict__.update(state)
# To use bricks used on a GPU first on a CPU later
try:
emitter = self.generator.readout.emitter
del emitter._theano_rng
except:
pass
示例14: test_beam_search_smallest
def test_beam_search_smallest():
a = numpy.array([[3, 6, 4], [1, 2, 7]])
ind, mins = BeamSearch._smallest(a, 2)
assert numpy.all(numpy.array(ind) == numpy.array([[1, 1], [0, 1]]))
assert numpy.all(mins == [1, 2])
示例15: BleuValidator
class BleuValidator(SimpleExtension, SamplingBase):
# TODO: a lot has been changed in NMT, sync respectively
"""Implements early stopping based on BLEU score."""
def __init__(self, source_sentence, samples, model, data_stream,
config, n_best=1, track_n_models=1,
normalize=True, **kwargs):
# TODO: change config structure
super(BleuValidator, self).__init__(**kwargs)
self.source_sentence = source_sentence
self.samples = samples
self.model = model
self.data_stream = data_stream
self.config = config
self.n_best = n_best
self.track_n_models = track_n_models
self.normalize = normalize
self.verbose = config.get('val_set_out', None)
# Helpers
self.vocab = data_stream.dataset.dictionary
self.unk_sym = data_stream.dataset.unk_token
self.eos_sym = data_stream.dataset.eos_token
self.unk_idx = self.vocab[self.unk_sym]
self.eos_idx = self.vocab[self.eos_sym]
self.best_models = []
self.val_bleu_curve = []
self.beam_search = BeamSearch(samples=samples)
self.multibleu_cmd = ['perl', self.config['bleu_script'],
self.config['val_set_grndtruth'], '<']
# Create saving directory if it does not exist
if not os.path.exists(self.config['saveto']):
os.makedirs(self.config['saveto'])
if self.config['reload']:
try:
bleu_score = numpy.load(os.path.join(self.config['saveto'],
'val_bleu_scores.npz'))
self.val_bleu_curve = bleu_score['bleu_scores'].tolist()
# Track n best previous bleu scores
for i, bleu in enumerate(
sorted(self.val_bleu_curve, reverse=True)):
if i < self.track_n_models:
self.best_models.append(ModelInfo(bleu))
logger.info("BleuScores Reloaded")
except:
logger.info("BleuScores not Found")
def do(self, which_callback, *args):
# Track validation burn in
if self.main_loop.status['iterations_done'] <= \
self.config['val_burn_in']:
return
# Evaluate and save if necessary
self._save_model(self._evaluate_model())
def _evaluate_model(self):
logger.info("Started Validation: ")
val_start_time = time.time()
mb_subprocess = Popen(self.multibleu_cmd, stdin=PIPE, stdout=PIPE)
total_cost = 0.0
# Get target vocabulary
sources = self._get_attr_rec(self.main_loop, 'data_stream')
trg_vocab = sources.data_streams[1].dataset.dictionary
self.trg_ivocab = {v: k for k, v in trg_vocab.items()}
trg_eos_sym = sources.data_streams[1].dataset.eos_token
self.trg_eos_idx = trg_vocab[trg_eos_sym]
if self.verbose:
ftrans = open(self.config['val_set_out'], 'w')
for i, line in enumerate(self.data_stream.get_epoch_iterator()):
"""
Load the sentence, retrieve the sample, write to file
"""
seq = self._oov_to_unk(
line[0], self.config['src_vocab_size'], self.unk_idx)
input_ = numpy.tile(seq, (self.config['beam_size'], 1))
# draw sample, checking to ensure we don't get an empty string back
trans, costs = \
self.beam_search.search(
input_values={self.source_sentence: input_},
max_length=3*len(seq), eol_symbol=self.trg_eos_idx,
ignore_first_eol=True)
# normalize costs according to the sequence lengths
if self.normalize:
lengths = numpy.array([len(s) for s in trans])
costs = costs / lengths
nbest_idx = numpy.argsort(costs)[:self.n_best]
for j, best in enumerate(nbest_idx):
#.........这里部分代码省略.........