当前位置: 首页>>代码示例>>Python>>正文


Python ComputationGraph.get_theano_function方法代码示例

本文整理汇总了Python中blocks.graph.ComputationGraph.get_theano_function方法的典型用法代码示例。如果您正苦于以下问题:Python ComputationGraph.get_theano_function方法的具体用法?Python ComputationGraph.get_theano_function怎么用?Python ComputationGraph.get_theano_function使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在blocks.graph.ComputationGraph的用法示例。


在下文中一共展示了ComputationGraph.get_theano_function方法的13个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: __init__

# 需要导入模块: from blocks.graph import ComputationGraph [as 别名]
# 或者: from blocks.graph.ComputationGraph import get_theano_function [as 别名]
    def __init__(self, data_stream, variables, path=None, **kwargs):
        self.data_stream = data_stream
        self.variables = variables
        self.path = path
        self.prediction = None

        kwargs.setdefault("after_training", True)
        super(PredictDataStream, self).__init__(**kwargs)

        cg = ComputationGraph(variables)
        self.theano_function = cg.get_theano_function()
开发者ID:teganmaharaj,项目名称:deeplearningclass,代码行数:13,代码来源:predict.py

示例2: __init__

# 需要导入模块: from blocks.graph import ComputationGraph [as 别名]
# 或者: from blocks.graph.ComputationGraph import get_theano_function [as 别名]
    def __init__(self, generator, steps=320, n_samples = 10, 
            mean_data = 0, std_data = 1, sample_rate = 8000,
            save_name = "sample_", **kwargs):
        super(Speak, self).__init__(**kwargs)
        steps = 300
        sample = ComputationGraph(generator.generate(n_steps=steps, 
            batch_size=n_samples, iterate=True))
        self.sample_fn = sample.get_theano_function()

        self.mean_data = mean_data
        self.std_data = std_data
        self.sample_rate = sample_rate
        self.save_name = save_name
开发者ID:anirudh9119,项目名称:SpeechSyn,代码行数:15,代码来源:sample.py

示例3: test_batchnorm_rolling

# 需要导入模块: from blocks.graph import ComputationGraph [as 别名]
# 或者: from blocks.graph.ComputationGraph import get_theano_function [as 别名]
def test_batchnorm_rolling():
    layer = BatchNormalization(
            input_dim = 5, rolling_accumulate=True)
    layer.initialize()
    x = T.matrix()

    x_val = np.ones((6, 5), dtype=theano.config.floatX)
    x_val[0,0] = 10.0

    y = layer.apply(x)
    cg = ComputationGraph([y])

    _func = cg.get_theano_function()
    for i in range(100):
        ret = _func(x_val)
    u = layer.u.get_value()
    assert_allclose(u[0], 1.58491838)
    assert_allclose(u[1], 0.6339674)

    s = layer.s.get_value()
    assert_allclose(s[0], 7.13214684)
    assert_allclose(s[1], 0.)
开发者ID:AtousaTorabi,项目名称:cuboid,代码行数:24,代码来源:test_batch_norm.py

示例4: analyze

# 需要导入模块: from blocks.graph import ComputationGraph [as 别名]
# 或者: from blocks.graph.ComputationGraph import get_theano_function [as 别名]
def analyze(cli_params):
    p, _ = load_and_log_params(cli_params)
    _, data, whiten, cnorm = setup_data(p, test_set=True)
    ladder = setup_model(p)

    # Analyze activations
    dset, indices, calc_batchnorm = {
        'train': (data.train, data.train_ind, False),
        'valid': (data.valid, data.valid_ind, True),
        'test':  (data.test, data.test_ind, True),
    }[p.data_type]

    if calc_batchnorm:
        logger.info('Calculating batch normalization for clean.labeled path')
        main_loop = DummyLoop(
            extensions=[
                FinalTestMonitoring(
                    [ladder.costs.class_clean, ladder.error.clean]
                    + ladder.costs.denois.values(),
                    make_datastream(data.train, data.train_ind,
                                    # These need to match with the training
                                    p.batch_size,
                                    n_labeled=p.labeled_samples,
                                    n_unlabeled=len(data.train_ind),
                                    cnorm=cnorm,
                                    whiten=whiten, scheme=ShuffledScheme),
                    make_datastream(data.valid, data.valid_ind,
                                    p.valid_batch_size,
                                    n_labeled=len(data.valid_ind),
                                    n_unlabeled=len(data.valid_ind),
                                    cnorm=cnorm,
                                    whiten=whiten, scheme=ShuffledScheme),
                    prefix="valid_final", before_training=True),
                ShortPrinting({
                    "valid_final": OrderedDict([
                        ('VF_C_class', ladder.costs.class_clean),
                        ('VF_E', ladder.error.clean),
                        ('VF_C_de', [ladder.costs.denois.get(0),
                                     ladder.costs.denois.get(1),
                                     ladder.costs.denois.get(2),
                                     ladder.costs.denois.get(3)]),
                    ]),
                }, after_training=True, use_log=False),
            ])
        main_loop.run()

    # Make a datastream that has all the indices in the labeled pathway
    ds = make_datastream(dset, indices,
                         batch_size=p.get('batch_size'),
                         n_labeled=len(indices),
                         n_unlabeled=len(indices),
                         balanced_classes=False,
                         whiten=whiten,
                         cnorm=cnorm,
                         scheme=SequentialScheme)

    # We want out the values after softmax
    outputs = ladder.act.clean.labeled.h[len(ladder.layers) - 1]

    # Replace the batch normalization paramameters with the shared variables
    if calc_batchnorm:
        outputreplacer = TestMonitoring()
        _, _,  outputs = outputreplacer._get_bn_params(outputs)

    cg = ComputationGraph(outputs)
    f = cg.get_theano_function()

    it = ds.get_epoch_iterator(as_dict=True)
    res = []
    inputs = {'features_labeled': [],
              'targets_labeled': [],
              'features_unlabeled': []}
    # Loop over one epoch
    for d in it:
        # Store all inputs
        for k, v in d.iteritems():
            inputs[k] += [v]
        # Store outputs
        res += [f(*[d[str(inp)] for inp in cg.inputs])]

    # Concatenate all minibatches
    res = [numpy.vstack(minibatches) for minibatches in zip(*res)]
    inputs = {k: numpy.vstack(v) for k, v in inputs.iteritems()}

    return inputs['targets_labeled'], res[0]
开发者ID:lude-ma,项目名称:ladder,代码行数:87,代码来源:run.py

示例5: load

# 需要导入模块: from blocks.graph import ComputationGraph [as 别名]
# 或者: from blocks.graph.ComputationGraph import get_theano_function [as 别名]
save_dir = os.environ['RESULTS_DIR']
save_dir = os.path.join(save_dir,'blizzard/')

experiment_name = "sp_only_0"

main_loop = load(save_dir+"pkl/best_"+experiment_name+".pkl")

generator = main_loop.model.get_top_bricks()[0]

steps = 2048
n_samples = 1

sample = ComputationGraph(generator.generate(n_steps=steps, 
    batch_size=n_samples, iterate=True))
sample_fn = sample.get_theano_function()

outputs = sample_fn()[-2]

outputs = outputs*sp_std + sp_mean
outputs = outputs.swapaxes(0,1)
outputs = outputs[0]

print outputs.max(), outputs.min()

pyplot.figure(figsize=(100,15))
pyplot.imshow(outputs.T)
pyplot.colorbar()
pyplot.gca().invert_yaxis()
pyplot.savefig(save_dir+"samples/best_"+experiment_name+"9.png")
pyplot.close()
开发者ID:anirudh9119,项目名称:SpeechSyn,代码行数:32,代码来源:sample_sp_only.py

示例6: GANMainLoop

# 需要导入模块: from blocks.graph import ComputationGraph [as 别名]
# 或者: from blocks.graph.ComputationGraph import get_theano_function [as 别名]
                                    (discriminator_cg.outputs[0] > 0.5)[:m].sum().astype('float32')),
                                   (false_dataset, false_dataset + 
                                    (discriminator_cg.outputs[0] < 0.5)[m:].sum().astype('float32'))])
generator_descent.add_updates([(gen_errors, gen_errors + (ComputationGraph(discriminated_samples).outputs[0] > 0.5).sum().astype('float32'))])


extensions = []
extensions.append(Timing(after_batch=True))
extensions.append(Checkpoint('gan.thn', every_n_batches=10000, 
                             use_cpickle=True, save_separately=['log']))
extensions.append(Printing(every_n_batches=1))


main_loop = GANMainLoop(algorithm_g=generator_descent,
                        g_out=g_out,
                        algorithm_d=discriminator_descent,
                        d_out=d_out,
                        false_generated=false_generated,
                        false_dataset=false_dataset,
                        generator_errors=gen_errors,
                        data_stream=data_stream,
                        generator=generator_cg.get_theano_function(),
                        discriminator=discriminator_cg.get_theano_function(),
                        k=1,
                        noise_per_sample=100,
                        minibatches=m,
                        extensions=extensions,
                        observables=observables)

main_loop.run()
开发者ID:Bjornwolf,项目名称:language-model,代码行数:32,代码来源:gan_train.py

示例7: dump_unlabeled_encoder

# 需要导入模块: from blocks.graph import ComputationGraph [as 别名]
# 或者: from blocks.graph.ComputationGraph import get_theano_function [as 别名]
def dump_unlabeled_encoder(cli_params):
    """
    called when dumping
    :return: inputs, result
    """
    p, _ = load_and_log_params(cli_params)
    _, data, whiten, cnorm = setup_data(p, test_set=(p.data_type == 'test'))
    ladder = setup_model(p)

    # Analyze activations
    if p.data_type == 'train':
        dset, indices, calc_batchnorm = data.train, data.train_ind, False
    elif p.data_type == 'valid':
        dset, indices, calc_batchnorm = data.valid, data.valid_ind, True
    elif p.data_type == 'test':
        dset, indices, calc_batchnorm = data.test, data.test_ind, True
    else:
        raise Exception("Unknown data-type %s"%p.data_type)

    if calc_batchnorm:
        logger.info('Calculating batch normalization for clean.labeled path')
        main_loop = DummyLoop(
            extensions=[
                FinalTestMonitoring(
                    [ladder.costs.class_clean, ladder.error.clean, ladder.oos.clean]
                    + ladder.costs.denois.values(),
                    make_datastream(data.train, data.train_ind,
                                    # These need to match with the training
                                    p.batch_size,
                                    n_labeled=p.labeled_samples,
                                    n_unlabeled=len(data.train_ind),
                                    balanced_classes=p.balanced_classes,
                                    cnorm=cnorm,
                                    whiten=whiten, scheme=ShuffledScheme),
                    make_datastream(data.valid, data.valid_ind,
                                    p.valid_batch_size,
                                    n_labeled=len(data.valid_ind),
                                    n_unlabeled=len(data.valid_ind),
                                    balanced_classes=p.balanced_classes,
                                    cnorm=cnorm,
                                    whiten=whiten, scheme=ShuffledScheme),
                    prefix="valid_final", before_training=True),
                ShortPrinting({
                    "valid_final": OrderedDict([
                        ('VF_C_class', ladder.costs.class_clean),
                        ('VF_E', ladder.error.clean),
                        ('VF_O', ladder.oos.clean),
                        ('VF_C_de', [ladder.costs.denois.get(0),
                                     ladder.costs.denois.get(1),
                                     ladder.costs.denois.get(2),
                                     ladder.costs.denois.get(3)]),
                    ]),
                }, after_training=True, use_log=False),
            ])
        main_loop.run()

    all_ind = numpy.arange(dset.num_examples)
    # Make a datastream that has all the indices in the labeled pathway
    ds = make_datastream(dset, all_ind,
                         batch_size=p.get('batch_size'),
                         n_labeled=len(all_ind),
                         n_unlabeled=len(all_ind),
                         balanced_classes=False,
                         whiten=whiten,
                         cnorm=cnorm,
                         scheme=SequentialScheme)

    # If layer=-1 we want out the values after softmax
    if p.layer < 0:
        # ladder.act.clean.unlabeled.h is a dict not a list
        outputs = ladder.act.clean.labeled.h[len(ladder.layers) + p.layer]
    else:
        outputs = ladder.act.clean.labeled.h[p.layer]

    # Replace the batch normalization paramameters with the shared variables
    if calc_batchnorm:
        outputreplacer = TestMonitoring()
        _, _,  outputs = outputreplacer._get_bn_params(outputs)

    cg = ComputationGraph(outputs)
    f = cg.get_theano_function()

    it = ds.get_epoch_iterator(as_dict=True)
    res = []

    # Loop over one epoch
    for d in it:
        # Store outputs
        res += [f(*[d[str(inp)] for inp in cg.inputs])]

    # Concatenate all minibatches
    res = [numpy.vstack(minibatches) for minibatches in zip(*res)]

    return res[0]
开发者ID:fulldecent,项目名称:LRE,代码行数:96,代码来源:run.py

示例8: __init__

# 需要导入模块: from blocks.graph import ComputationGraph [as 别名]
# 或者: from blocks.graph.ComputationGraph import get_theano_function [as 别名]
 def __init__(self, variable, **kwargs):
     super(SaveComputationGraph, self).__init__(**kwargs)
     variable_graph = ComputationGraph(variable)
     self.theano_function = variable_graph.get_theano_function()
开发者ID:anirudh9119,项目名称:SpeechSyn,代码行数:6,代码来源:__init__.py

示例9: _create_main_loop

# 需要导入模块: from blocks.graph import ComputationGraph [as 别名]
# 或者: from blocks.graph.ComputationGraph import get_theano_function [as 别名]
    def _create_main_loop(self):
        # hyper parameters
        hp = self.params
        batch_size = hp['batch_size']
        biases_init = Constant(0)
        batch_normalize = hp['batch_normalize']

        ### Build fprop
        tensor5 = T.TensorType(config.floatX, (False,)*5)
        X = tensor5("images")
        #X = T.tensor4("images")
        y = T.lvector('targets')

        gnet_params = OrderedDict()
        #X_shuffled = X[:, :, :, :, [2, 1, 0]]
        #X_shuffled = gpu_contiguous(X.dimshuffle(0, 1, 4, 2, 3)) * 255

        X = X[:, :, :, :, [2, 1, 0]]
        X_shuffled = X.dimshuffle((0, 1, 4, 2, 3)) * 255
        X_r = X_shuffled.reshape((X_shuffled.shape[0],
                                  X_shuffled.shape[1]*X_shuffled.shape[2],
                                  X_shuffled.shape[3], X_shuffled.shape[4]))
        X_r = X_r - (np.array([104, 117, 123])[None, :, None, None]).astype('float32')


        expressions, input_data, param = stream_layer_exp(inputs = ('data', X_r),
                                                          mode='rgb')
        res = expressions['outloss']
        y_hat = res.flatten(ndim=2)

        import pdb; pdb.set_trace()

        ### Build Cost
        cost = CategoricalCrossEntropy().apply(y, y_hat)
        cost = T.cast(cost, theano.config.floatX)
        cost.name = 'cross_entropy'

        y_pred = T.argmax(y_hat, axis=1)
        misclass = T.cast(T.mean(T.neq(y_pred, y)), theano.config.floatX)
        misclass.name = 'misclass'

        monitored_channels = []
        monitored_quantities = [cost, misclass, y_hat, y_pred]
        model = Model(cost)

        training_cg = ComputationGraph(monitored_quantities)
        inference_cg = ComputationGraph(monitored_quantities)

        ### Get evaluation function
        #training_eval = training_cg.get_theano_function(additional_updates=bn_updates)
        training_eval = training_cg.get_theano_function()
        #inference_eval = inference_cg.get_theano_function()


        # Dataset
        test = JpegHDF5Dataset('test',
                               #name='jpeg_data_flows.hdf5',
                               load_in_memory=True)
        #mean = np.load(os.path.join(os.environ['UCF101'], 'mean.npy'))
        import pdb; pdb.set_trace()

        ### Eval
        labels = np.zeros(test.num_video_examples)
        y_hat = np.zeros((test.num_video_examples, 101))
        labels_flip = np.zeros(test.num_video_examples)
        y_hat_flip = np.zeros((test.num_video_examples, 101))

        ### Important to shuffle list for batch normalization statistic
        #rng = np.random.RandomState()
        #examples_list = range(test.num_video_examples)
        #import pdb; pdb.set_trace()
        #rng.shuffle(examples_list)

        nb_frames=1

        for i in xrange(24):
            scheme = HDF5SeqScheme(test.video_indexes,
                                   examples=test.num_video_examples,
                                   batch_size=batch_size,
                                   f_subsample=i,
                                   nb_subsample=25,
                                   frames_per_video=nb_frames)
           #for crop in ['upleft', 'upright', 'downleft', 'downright', 'center']:
            for crop in ['center']:
                stream = JpegHDF5Transformer(
                    input_size=(240, 320), crop_size=(224, 224),
                    #input_size=(256, 342), crop_size=(224, 224),
                    crop_type=crop,
                    translate_labels = True,
                    flip='noflip', nb_frames = nb_frames,
                    data_stream=ForceFloatX(DataStream(
                            dataset=test, iteration_scheme=scheme)))
                stream_flip = JpegHDF5Transformer(
                    input_size=(240, 320), crop_size=(224, 224),
                    #input_size=(256, 342), crop_size=(224, 224),
                    crop_type=crop,
                    translate_labels = True,
                    flip='flip', nb_frames = nb_frames,
                    data_stream=ForceFloatX(DataStream(
                            dataset=test, iteration_scheme=scheme)))
#.........这里部分代码省略.........
开发者ID:BinbinBian,项目名称:LSTM-Attention,代码行数:103,代码来源:conv_full.py

示例10: __init__

# 需要导入模块: from blocks.graph import ComputationGraph [as 别名]
# 或者: from blocks.graph.ComputationGraph import get_theano_function [as 别名]

#.........这里部分代码省略.........

        # Attention mechanism MLP
        attention_mlp = MLP(dims=config.attention_mlp_hidden + [1],
                            activations=config.attention_mlp_activations[1:] + [Identity()],
                            name='attention_mlp')
        attention_qlinear = Linear(input_dim=qenc_dim, output_dim=config.attention_mlp_hidden[0], name='attq')
        attention_clinear = Linear(input_dim=cenc_dim, output_dim=config.attention_mlp_hidden[0], use_bias=False, name='attc')
        bricks += [attention_mlp, attention_qlinear, attention_clinear]
        layer1 = Tanh().apply(attention_clinear.apply(cenc.reshape((cenc.shape[0]*cenc.shape[1], cenc.shape[2])))
                                        .reshape((cenc.shape[0],cenc.shape[1],config.attention_mlp_hidden[0]))
                             + attention_qlinear.apply(qenc)[None, :, :])
        layer1.name = 'layer1'
        att_weights = attention_mlp.apply(layer1.reshape((layer1.shape[0]*layer1.shape[1], layer1.shape[2])))
        att_weights.name = 'att_weights_0'
        att_weights = att_weights.reshape((layer1.shape[0], layer1.shape[1]))
        att_weights.name = 'att_weights'

        attended = tensor.sum(cenc * tensor.nnet.softmax(att_weights.T).T[:, :, None], axis=0)
        attended.name = 'attended'

        # Now we can calculate our output
        out_mlp = MLP(dims=[cenc_dim + qenc_dim] + config.out_mlp_hidden + [config.n_entities],
                      activations=config.out_mlp_activations + [Identity()],
                      name='out_mlp')
        bricks += [out_mlp]
        probs = out_mlp.apply(tensor.concatenate([attended, qenc], axis=1))
        probs.name = 'probs'

        # not needed anymore, since we're not only looking at entities
        # is_candidate = tensor.eq(tensor.arange(config.n_entities, dtype='int32')[None, None, :],
        #                          tensor.switch(candidates_mask, candidates, -tensor.ones_like(candidates))[:, :, None]).sum(axis=1)
        # probs = tensor.switch(is_candidate, probs, -1000 * tensor.ones_like(probs))

        # Calculate prediction, cost and error rate

        # vocab = tensor.arange(10)
        # probs = numpy.asarray([0, 0.8, 0, 0.2], dtype=numpy.float32)
        # context = numpy.asarray([3, 2, 8, 1], dtype=numpy.int32)
        # ans3 =  numpy.asarray([2, 8, 1], dtype=numpy.int32)
        # ans1 =  numpy.asarray([1, 3, 4], dtype=numpy.int32)
        # ans2 =  numpy.asarray([1, 1, 4], dtype=numpy.int32)

        # convert probs vector to one that's the same size as vocab, with all zeros except probs:
        # probs = tensor.switch(is_candidate, probs, -1000 * tensor.ones_like(probs))
        probsPadded = tensor.zeros_like(vocab_size, dtype=numpy.float32)
        probsSubset = probsPadded[cembed] #TODO this should be masked
        b = tensor.set_subtensor(probsSubset, probs)

        # get the similarity score of each (masked) answer with the context probs:
        ans1probs = b[a1enc]
        ans1score = tensor.switch(ans1_mask, ans1probs, tensor.zeros_like(ans1probs)).sum()
        ans2probs = b[a2enc]
        ans2score = ans2probs.sum()
        ans3probs = b[a3enc]
        ans3score = ans3probs.sum()
        ans4probs = b[a4enc]
        ans4score = ans4probs.sum()

        # and pick the best one:
        allans = tensor.stacklists([ans1score, ans2score, ans3score, ans4score])
        pred = tensor.argmax(allans)

        cg = ComputationGraph([ans1probs, ans1score, ans2probs, ans2score, ans3probs, ans3score, ans4probs, ans4score, allans, pred])
        f = cg.get_theano_function()
        out = f()

        #pred = probs.argmax(axis=1)
        #print "pred"
        #print pred TODO CHANGE THIS!
        cost = Softmax().categorical_cross_entropy(answer, probs).mean()
        error_rate = tensor.neq(answer, pred).mean()

        # Apply dropout
        cg = ComputationGraph([cost, error_rate])
        if config.w_noise > 0:
            noise_vars = VariableFilter(roles=[WEIGHT])(cg)
            cg = apply_noise(cg, noise_vars, config.w_noise)
        if config.dropout > 0:
            cg = apply_dropout(cg, qhidden_list + chidden_list, config.dropout)
        [cost_reg, error_rate_reg] = cg.outputs

        # Other stuff
        cost_reg.name = cost.name = 'cost'
        error_rate_reg.name = error_rate.name = 'error_rate'


        self.probs = probs
        self.probs.name = "probs"
        self.cost = cost
        self.cost.name = "cost"
        #
        self.sgd_cost = cost_reg
        self.monitor_vars = [[cost_reg], [error_rate_reg]]
        self.monitor_vars_valid = [[cost], [error_rate]]

        # Initialize bricks
        for brick in bricks:
            brick.weights_init = config.weights_init
            brick.biases_init = config.biases_init
            brick.initialize()
开发者ID:YuzhouWang,项目名称:657-Project,代码行数:104,代码来源:attentive_reader.py

示例11: ComputationGraph

# 需要导入模块: from blocks.graph import ComputationGraph [as 别名]
# 或者: from blocks.graph.ComputationGraph import get_theano_function [as 别名]
# test = tensor.eq(x, s)
# a = test.eval()
# print a
#xSub = theano.shared(x)
probsPadded = tensor.zeros_like(vocab, dtype=numpy.float32)
probsSubset = probsPadded[context]
b = tensor.set_subtensor(probsSubset, probs)

ans1probs = b[ans1]
ans1score = ans1probs.sum()
ans2probs = b[ans2]
ans2score = ans2probs.sum()
ans3probs = b[ans3]
ans3score = ans3probs.sum()
allans = tensor.stacklists([ans1score, ans2score, ans3score])
pred = tensor.argmax(allans)


cg = ComputationGraph([ans1probs, ans1score, ans2probs, ans2score, ans3probs, ans3score, allans, pred])
f = cg.get_theano_function()
out = f()
# a = probsPadded.eval()
# be = b.eval()
# a1p = ans1probs.eval()
# a1 = ans1score.eval()
# print a
# print be
# print a1p
# print a1
print out
开发者ID:YuzhouWang,项目名称:657-Project,代码行数:32,代码来源:theanotest.py

示例12: Identity

# 需要导入模块: from blocks.graph import ComputationGraph [as 别名]
# 或者: from blocks.graph.ComputationGraph import get_theano_function [as 别名]
    post_merge = Identity(),
    merged_dim = dimension,
    name="readout")

generator = SequenceGenerator(
    readout=readout,
    transition=transition,
    fork = Fork(['inputs'], prototype=Identity()),
    weights_init = initialization.Identity(1.),
    biases_init = initialization.Constant(0.),
    name="generator")

generator.push_initialization_config()
generator.transition.transition.weights_init = initialization.Identity(2.)
generator.initialize()

results = generator.generate(n_steps=n_steps, 
            batch_size=1, iterate=True,
            return_initial_states = True)

results_cg = ComputationGraph(results)
results_tf = results_cg.get_theano_function()

generated_sequence_t = results_tf()[1]
generated_sequence_t.shape=(n_steps+1, dimension)
print generated_sequence_t
print generated_sequence



开发者ID:donghyunlee,项目名称:play,代码行数:29,代码来源:bug_sequence_generator.py

示例13: init_generate

# 需要导入模块: from blocks.graph import ComputationGraph [as 别名]
# 或者: from blocks.graph.ComputationGraph import get_theano_function [as 别名]
 def init_generate(self):
     generated = self.get_generate_graph(use_mask=False)
     cg = ComputationGraph(generated['outputs'])
     self._do_generate = cg.get_theano_function()
开发者ID:DingKe,项目名称:attention-lvcsr,代码行数:6,代码来源:recognizer.py


注:本文中的blocks.graph.ComputationGraph.get_theano_function方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。