当前位置: 首页>>代码示例>>Python>>正文


Python SequenceGenerator.cost_matrix方法代码示例

本文整理汇总了Python中blocks.bricks.sequence_generators.SequenceGenerator.cost_matrix方法的典型用法代码示例。如果您正苦于以下问题:Python SequenceGenerator.cost_matrix方法的具体用法?Python SequenceGenerator.cost_matrix怎么用?Python SequenceGenerator.cost_matrix使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在blocks.bricks.sequence_generators.SequenceGenerator的用法示例。


在下文中一共展示了SequenceGenerator.cost_matrix方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: build_model

# 需要导入模块: from blocks.bricks.sequence_generators import SequenceGenerator [as 别名]
# 或者: from blocks.bricks.sequence_generators.SequenceGenerator import cost_matrix [as 别名]
def build_model(alphabet_size, config):
    layers = config['lstm_layers']
    dimensions = [config['lstm_dim_' + str(i)] for i in range(layers)]
    uniform_width = config['lstm_init_width']
    stack = []
    for dim in dimensions:
        stack.append(LSTM(dim=dim, use_bias=True, 
                          weights_init = Uniform(width=uniform_width),
                          forget_init=Constant(1.)))
    recurrent_stack = RecurrentStack(stack, name='transition')

    readout = Readout(readout_dim=alphabet_size,
                      source_names=['states#' + str(layers - 1)],
                      emitter=SoftmaxEmitter(name='emitter'),
                      feedback_brick=LookupFeedback(alphabet_size,
                                                    feedback_dim=alphabet_size,
                                                    name='feedback'),
                      name='readout')

    generator = SequenceGenerator(readout=readout,
                                  transition=recurrent_stack,
                                  weights_init=Uniform(width=uniform_width),
                                  biases_init=Constant(0),
                                  name='generator')
    generator.push_initialization_config()
    generator.initialize()

    x = tensor.lmatrix('features')
    mask = tensor.fmatrix('features_mask')
    cost_matrix = generator.cost_matrix(x, mask=mask)

    log2e = math.log(math.e, 2)
    if 'batch_length' in config:
        length = config['batch_length'] - config['batch_overlap']

        cost = log2e * aggregation.mean(cost_matrix[:,-length:].sum(), 
                                    mask[:,-length:].sum())
    else:
        cost = log2e * aggregation.mean(cost_matrix[:,:].sum(), 
                                    mask[:,:].sum())
        
    cost.name = 'bits_per_character'

    return generator, cost
开发者ID:Bjornwolf,项目名称:language-model,代码行数:46,代码来源:model.py

示例2: Decoder

# 需要导入模块: from blocks.bricks.sequence_generators import SequenceGenerator [as 别名]
# 或者: from blocks.bricks.sequence_generators.SequenceGenerator import cost_matrix [as 别名]
class Decoder(Initializable):
    def __init__(self, vocab_size, embedding_dim, 
            state_dim, theano_seed=None, **kwargs):
        super(Decoder, self).__init__(**kwargs)
        self.vocab_size = vocab_size
        self.embedding_dim = embedding_dim
        self.theano_seed = theano_seed

        self.transition = GatedRecurrent(dim=state_dim, 
                activation=Tanh(), name='decoder')

        readout = Readout(
                source_names=['states'],
                readout_dim=self.vocab_size,
                merged_dim=state_dim)

        self.sequence_generator = SequenceGenerator(
                readout=readout,
                transition=self.transition,
                fork=Fork([name for name in self.transition.apply.sequences
                    if name != 'mask'], prototype=Linear()))

        self.children = [self.sequence_generator]

    @application(inputs=['representation', 'source_sentence_mask',
                         'target_sentence_mask', 'target_sentence'],
                 outputs=['cost'])
    def cost(self, representation, source_sentence_mask,
            target_sentence, target_sentence_mask):
        source_sentence_mask = source_sentence_mask.T
        target_sentence = target_sentence.T
        target_sentence_mask = target_sentence_mask.T

        cost = self.sequence_generator.cost_matrix(**{
            'mask': target_sentence_mask,
            'outputs': target_sentence})
开发者ID:guxiaodong1987,项目名称:blocks-examples,代码行数:38,代码来源:simple.py

示例3: test_with_attention

# 需要导入模块: from blocks.bricks.sequence_generators import SequenceGenerator [as 别名]
# 或者: from blocks.bricks.sequence_generators.SequenceGenerator import cost_matrix [as 别名]
def test_with_attention():
    """Test a sequence generator with continuous outputs and attention."""
    rng = numpy.random.RandomState(1234)

    inp_dim = 2
    inp_len = 10
    attended_dim = 3
    attended_len = 11
    batch_size = 4
    n_steps = 30

    # For values
    def rand(size):
        return rng.uniform(size=size).astype(floatX)

    # For masks
    def generate_mask(length, batch_size):
        mask = numpy.ones((length, batch_size), dtype=floatX)
        # To make it look like read data
        for i in range(batch_size):
            mask[1 + rng.randint(0, length - 1):, i] = 0.0
        return mask

    output_vals = rand((inp_len, batch_size, inp_dim))
    output_mask_vals = generate_mask(inp_len, batch_size)
    attended_vals = rand((attended_len, batch_size, attended_dim))
    attended_mask_vals = generate_mask(attended_len, batch_size)

    transition = TestTransition(
        dim=inp_dim, attended_dim=attended_dim, activation=Identity())
    attention = SequenceContentAttention(
        state_names=transition.apply.states, match_dim=inp_dim)
    generator = SequenceGenerator(
        Readout(
            readout_dim=inp_dim,
            source_names=[transition.apply.states[0],
                          attention.take_glimpses.outputs[0]],
            emitter=TestEmitter()),
        transition=transition,
        attention=attention,
        weights_init=IsotropicGaussian(0.1), biases_init=Constant(0),
        add_contexts=False, seed=1234)
    generator.initialize()

    # Test 'cost_matrix' method
    attended = tensor.tensor3("attended")
    attended_mask = tensor.matrix("attended_mask")
    outputs = tensor.tensor3('outputs')
    mask = tensor.matrix('mask')
    costs = generator.cost_matrix(outputs, mask,
                                  attended=attended,
                                  attended_mask=attended_mask)
    costs_vals = costs.eval({outputs: output_vals,
                             mask: output_mask_vals,
                             attended: attended_vals,
                             attended_mask: attended_mask_vals})
    assert costs_vals.shape == (inp_len, batch_size)
    assert_allclose(costs_vals.sum(), 13.5042, rtol=1e-5)

    # Test `generate` method
    results = (
        generator.generate(n_steps=n_steps, batch_size=attended.shape[1],
                           attended=attended, attended_mask=attended_mask))
    assert len(results) == 5
    states_vals, outputs_vals, glimpses_vals, weights_vals, costs_vals = (
        theano.function([attended, attended_mask], results)
        (attended_vals, attended_mask_vals))
    assert states_vals.shape == (n_steps, batch_size, inp_dim)
    assert states_vals.shape == outputs_vals.shape
    assert glimpses_vals.shape == (n_steps, batch_size, attended_dim)
    assert weights_vals.shape == (n_steps, batch_size, attended_len)
    assert costs_vals.shape == (n_steps, batch_size)
    assert_allclose(states_vals.sum(), 23.4172, rtol=1e-5)
    # There is no generation cost in this case, since generation is
    # deterministic
    assert_allclose(costs_vals.sum(), 0.0, rtol=1e-5)
    assert_allclose(weights_vals.sum(), 120.0, rtol=1e-5)
    assert_allclose(glimpses_vals.sum(), 199.2402, rtol=1e-5)
    assert_allclose(outputs_vals.sum(), -11.6008, rtol=1e-5)
开发者ID:Fdenpc,项目名称:blocks,代码行数:81,代码来源:test_sequence_generators.py

示例4: main

# 需要导入模块: from blocks.bricks.sequence_generators import SequenceGenerator [as 别名]
# 或者: from blocks.bricks.sequence_generators.SequenceGenerator import cost_matrix [as 别名]
def main(mode, save_path, steps, num_batches):
    num_states = MarkovChainDataset.num_states

    if mode == "train":
        # Experiment configuration
        rng = numpy.random.RandomState(1)
        batch_size = 50
        seq_len = 100
        dim = 10
        feedback_dim = 8

        # Build the bricks and initialize them
        transition = GatedRecurrent(name="transition", dim=dim,
                                    activation=Tanh())
        generator = SequenceGenerator(
            Readout(readout_dim=num_states, source_names=["states"],
                    emitter=SoftmaxEmitter(name="emitter"),
                    feedback_brick=LookupFeedback(
                        num_states, feedback_dim, name='feedback'),
                    name="readout"),
            transition,
            weights_init=IsotropicGaussian(0.01), biases_init=Constant(0),
            name="generator")
        generator.push_initialization_config()
        transition.weights_init = Orthogonal()
        generator.initialize()

        # Give an idea of what's going on.
        logger.info("Parameters:\n" +
                    pprint.pformat(
                        [(key, value.get_value().shape) for key, value
                         in Selector(generator).get_params().items()],
                        width=120))
        logger.info("Markov chain entropy: {}".format(
            MarkovChainDataset.entropy))
        logger.info("Expected min error: {}".format(
            -MarkovChainDataset.entropy * seq_len))

        # Build the cost computation graph.
        x = tensor.lmatrix('data')
        cost = aggregation.mean(generator.cost_matrix(x[:, :]).sum(),
                                x.shape[1])
        cost.name = "sequence_log_likelihood"

        algorithm = GradientDescent(
            cost=cost, params=list(Selector(generator).get_params().values()),
            step_rule=Scale(0.001))
        main_loop = MainLoop(
            algorithm=algorithm,
            data_stream=DataStream(
                MarkovChainDataset(rng, seq_len),
                iteration_scheme=ConstantScheme(batch_size)),
            model=Model(cost),
            extensions=[FinishAfter(after_n_batches=num_batches),
                        TrainingDataMonitoring([cost], prefix="this_step",
                                               after_batch=True),
                        TrainingDataMonitoring([cost], prefix="average",
                                               every_n_batches=100),
                        Checkpoint(save_path, every_n_batches=500),
                        Printing(every_n_batches=100)])
        main_loop.run()
    elif mode == "sample":
        main_loop = cPickle.load(open(save_path, "rb"))
        generator = main_loop.model

        sample = ComputationGraph(generator.generate(
            n_steps=steps, batch_size=1, iterate=True)).get_theano_function()

        states, outputs, costs = [data[:, 0] for data in sample()]

        numpy.set_printoptions(precision=3, suppress=True)
        print("Generation cost:\n{}".format(costs.sum()))

        freqs = numpy.bincount(outputs).astype(theano.config.floatX)
        freqs /= freqs.sum()
        print("Frequencies:\n {} vs {}".format(freqs,
                                               MarkovChainDataset.equilibrium))

        trans_freqs = numpy.zeros((num_states, num_states),
                                  dtype=theano.config.floatX)
        for a, b in zip(outputs, outputs[1:]):
            trans_freqs[a, b] += 1
        trans_freqs /= trans_freqs.sum(axis=1)[:, None]
        print("Transition frequencies:\n{}\nvs\n{}".format(
            trans_freqs, MarkovChainDataset.trans_prob))
    else:
        assert False
开发者ID:basaundi,项目名称:blocks,代码行数:89,代码来源:main.py

示例5: SequenceGenerator

# 需要导入模块: from blocks.bricks.sequence_generators import SequenceGenerator [as 别名]
# 或者: from blocks.bricks.sequence_generators.SequenceGenerator import cost_matrix [as 别名]
    name="readout")

generator = SequenceGenerator(readout=readout, 
                              transition=transition,
                              name = "generator")

generator.weights_init = IsotropicGaussian(0.01)
generator.biases_init = Constant(0.)
generator.push_initialization_config()

generator.transition.biases_init = IsotropicGaussian(0.01,1)
generator.transition.push_initialization_config()

generator.initialize()

cost_matrix = generator.cost_matrix(x)
cost = cost_matrix.mean()
cost.name = "sequence_log_likelihood"

cg = ComputationGraph(cost)
model = Model(cost)

#################
# Algorithm
#################

n_batches = 500

algorithm = GradientDescent(
    cost=cost, parameters=cg.parameters,
    step_rule=CompositeRule([StepClipping(10.0), Adam(lr)]))
开发者ID:anirudh9119,项目名称:SpeechSyn,代码行数:33,代码来源:deep_m1.py

示例6: IsotropicGaussian

# 需要导入模块: from blocks.bricks.sequence_generators import SequenceGenerator [as 别名]
# 或者: from blocks.bricks.sequence_generators.SequenceGenerator import cost_matrix [as 别名]
generator.weights_init = IsotropicGaussian(0.01)
generator.biases_init = Constant(0.)
generator.push_initialization_config()

generator.transition.biases_init = IsotropicGaussian(0.01,1)
generator.transition.push_initialization_config()

generator.initialize()

states = {}
states = generator.transition.apply.outputs

states = {name: shared_floatx_zeros((batch_size, hidden_size_recurrent))
        for name in states}

cost_matrix = generator.cost_matrix(x, **states)
#cost_matrix = cost_matrix*voiced

from theano import function

cost = cost_matrix.mean() + 0.*start_flag
cost.name = "nll"

cg = ComputationGraph(cost)
model = Model(cost)

transition_matrix = VariableFilter(
            theano_name_regex="state_to_state")(cg.parameters)
for matr in transition_matrix:
    matr.set_value(0.98*numpy.eye(hidden_size_recurrent, dtype=floatX))
开发者ID:anirudh9119,项目名称:SpeechSyn,代码行数:32,代码来源:f0_only.py

示例7: NoLookupDecoder

# 需要导入模块: from blocks.bricks.sequence_generators import SequenceGenerator [as 别名]
# 或者: from blocks.bricks.sequence_generators.SequenceGenerator import cost_matrix [as 别名]

#.........这里部分代码省略.........
            attention_sources (string): Defines the sources used by the 
                                        attention model 's' for decoder
                                        states, 'f' for feedback
            readout_sources (string): Defines the sources used in the 
                                      readout network. 's' for decoder
                                      states, 'f' for feedback, 'a' for
                                      attention (context vector)
            memory (string): Which external memory should be used
                             (cf.  ``_initialize_attention``)
            memory_size (int): Size of the external memory structure
            seq_len (int): Maximum sentence length
            init_strategy (string): How to initialize the RNN state
                                    (cf.  ``GRUInitialState``)
            theano_seed: Random seed
        """
        super(NoLookupDecoder, self).__init__(**kwargs)
        self.vocab_size = vocab_size
        self.embedding_dim = embedding_dim
        self.state_dim = state_dim
        self.representation_dim = representation_dim
        self.theano_seed = theano_seed

        # Initialize gru with special initial state
        self.transition = GRUInitialState(
            attended_dim=state_dim,
            init_strategy=init_strategy,
            dim=state_dim,
            activation=Tanh(),
            name='decoder')

        # Initialize the attention mechanism
        att_dim = att_dim if att_dim > 0 else state_dim
        self.attention,src_names = _initialize_attention(attention_strategy,
                                                         seq_len, 
                                                         self.transition, 
                                                         representation_dim, 
                                                         att_dim,
                                                         attention_sources,
                                                         readout_sources,
                                                         memory,
                                                         memory_size)

        # Initialize the readout, note that SoftmaxEmitter emits -1 for
        # initial outputs which is used by LookupFeedBackWMT15
        maxout_dim = maxout_dim if maxout_dim > 0 else state_dim
        readout = Readout(
            source_names=src_names,
            readout_dim=embedding_dim,
            emitter=NoLookupEmitter(initial_output=-1,
                                    readout_dim=embedding_dim,
                                    cost_brick=SquaredError()),
            #                        cost_brick=CategoricalCrossEntropy()),
            feedback_brick=TrivialFeedback(output_dim=embedding_dim),
            post_merge=InitializableFeedforwardSequence(
                [Bias(dim=maxout_dim, name='maxout_bias').apply,
                 Maxout(num_pieces=2, name='maxout').apply,
                 Linear(input_dim=maxout_dim / 2, output_dim=embedding_dim,
                        use_bias=False, name='softmax0').apply,
                 Logistic(name='softmax1').apply]),
            merged_dim=maxout_dim)

        # Build sequence generator accordingly
        self.sequence_generator = SequenceGenerator(
            readout=readout,
            transition=self.transition,
            attention=self.attention,
            fork=Fork([name for name in self.transition.apply.sequences
                       if name != 'mask'], prototype=Linear())
        )

        self.children = [self.sequence_generator]

    @application(inputs=['representation', 'representation_mask',
                         'target_sentence_mask', 'target_sentence'],
                 outputs=['cost'])
    def cost(self, representation, representation_mask,
             target_sentence, target_sentence_mask):

        target_sentence = target_sentence.T
        target_sentence_mask = target_sentence_mask.T

        # Get the cost matrix
        cost = self.sequence_generator.cost_matrix(**{
            'mask': target_sentence_mask,
            'outputs': target_sentence,
            'attended': representation,
            'attended_mask': representation_mask}
        )

        return (cost * target_sentence_mask).sum() / \
            target_sentence_mask.shape[1]

    @application
    def generate(self, source_shape, representation, **kwargs):
        return self.sequence_generator.generate(
            n_steps=2 * source_shape[1],
            batch_size=source_shape[0],
            attended=representation,
            attended_mask=tensor.ones(source_shape).T,
            **kwargs)        
开发者ID:ucam-smt,项目名称:sgnmt,代码行数:104,代码来源:decoder.py

示例8: SequenceGenerator

# 需要导入模块: from blocks.bricks.sequence_generators import SequenceGenerator [as 别名]
# 或者: from blocks.bricks.sequence_generators.SequenceGenerator import cost_matrix [as 别名]
generator = SequenceGenerator(readout=readout, 
                              transition=transition,
                              attention = attention,
                              name = "generator")

generator.weights_init = IsotropicGaussian(0.01)
generator.biases_init = Constant(0.)
generator.initialize()

mlp_context.weights_init = IsotropicGaussian(0.01)
mlp_context.biases_init = Constant(0.)
mlp_context.initialize()

#ipdb.set_trace()
cost_matrix = generator.cost_matrix(x, x_mask,
        attended = mlp_context.apply(context))
cost = cost_matrix.sum()/x_mask.sum()
cost.name = "sequence_log_likelihood"

cg = ComputationGraph(cost)
model = Model(cost)

#################
# Algorithm
#################

algorithm = GradientDescent(
    cost=cost, parameters=cg.parameters,
    step_rule=CompositeRule([StepClipping(10.0), Adam(lr)]))

train_monitor = TrainingDataMonitoring(
开发者ID:anirudh9119,项目名称:SpeechSyn,代码行数:33,代码来源:l3.py

示例9: Decoder

# 需要导入模块: from blocks.bricks.sequence_generators import SequenceGenerator [as 别名]
# 或者: from blocks.bricks.sequence_generators.SequenceGenerator import cost_matrix [as 别名]
class Decoder(Initializable):
    def __init__(self, vocab_size, embedding_dim, state_dim,
                 representation_dim, **kwargs):
        super(Decoder, self).__init__(**kwargs)
        self.vocab_size = vocab_size
        self.embedding_dim = embedding_dim
        self.state_dim = state_dim
        self.representation_dim = representation_dim

        self.transition = GRUInitialState(
            attended_dim=state_dim, dim=state_dim,
            activation=Tanh(), name='decoder')
        self.attention = SequenceContentAttention(
            state_names=self.transition.apply.states,
            attended_dim=representation_dim,
            match_dim=state_dim, name="attention")

        readout = Readout(
            source_names=['states', 'feedback', self.attention.take_glimpses.outputs[0]],
            readout_dim=self.vocab_size,
            emitter=SoftmaxEmitter(initial_output=-1),
            feedback_brick=LookupFeedbackWMT15(vocab_size, embedding_dim),
            post_merge=InitializableFeedforwardSequence(
                [Bias(dim=state_dim, name='maxout_bias').apply,
                 Maxout(num_pieces=2, name='maxout').apply,
                 Linear(input_dim=state_dim / 2, output_dim=embedding_dim,
                        use_bias=False, name='softmax0').apply,
                 Linear(input_dim=embedding_dim, name='softmax1').apply]),
            merged_dim=state_dim)

        self.sequence_generator = SequenceGenerator(
            readout=readout,
            transition=self.transition,
            attention=self.attention,
            fork=Fork([name for name in self.transition.apply.sequences
                       if name != 'mask'], prototype=Linear())
        )

        self.children = [self.sequence_generator]

    @application(inputs=['representation', 'source_sentence_mask',
                         'target_sentence_mask', 'target_sentence'],
                 outputs=['cost'])
    def cost(self, representation, source_sentence_mask,
             target_sentence, target_sentence_mask):

        source_sentence_mask = source_sentence_mask.T
        target_sentence = target_sentence.T
        target_sentence_mask = target_sentence_mask.T

        # Get the cost matrix
        cost = self.sequence_generator.cost_matrix(
                    **{'mask': target_sentence_mask,
                       'outputs': target_sentence,
                       'attended': representation,
                       'attended_mask': source_sentence_mask}
        )

        return (cost * target_sentence_mask).sum() / target_sentence_mask.shape[1]

    @application
    def generate(self, source_sentence, representation):
        return self.sequence_generator.generate(
            n_steps=2 * source_sentence.shape[1],
            batch_size=source_sentence.shape[0],
            attended=representation,
            attended_mask=tensor.ones(source_sentence.shape).T)
开发者ID:rizar,项目名称:NMT,代码行数:69,代码来源:model.py

示例10: SequenceGenerator

# 需要导入模块: from blocks.bricks.sequence_generators import SequenceGenerator [as 别名]
# 或者: from blocks.bricks.sequence_generators.SequenceGenerator import cost_matrix [as 别名]
    name="readout")

generator = SequenceGenerator(readout=readout, 
                              transition=transition,
                              name = "generator")

generator.weights_init = IsotropicGaussian(0.01)
generator.biases_init = Constant(0.001)
generator.push_initialization_config()

#generator.transition.weights_init = initialization.Identity(0.98)
#generator.transition.biases_init = IsotropicGaussian(0.01,0.9)
generator.transition.push_initialization_config()
generator.initialize()

cost_matrix = generator.cost_matrix(x, x_mask)
cost = cost_matrix.sum(axis = 0).mean()
cost.name = "nll"

cg = ComputationGraph(cost)
model = Model(cost)

transition_matrix = VariableFilter(
            theano_name_regex = "state_to_state")(cg.parameters)
for matr in transition_matrix:
    matr.set_value(0.98*np.eye(hidden_size_recurrent, dtype = floatX))

readouts = VariableFilter( applications = [generator.readout.readout],
    name_regex = "output")(cg.variables)[0]

mean, sigma, corr, weight, penup = emitter.components(readouts)
开发者ID:anirudh9119,项目名称:scribe,代码行数:33,代码来源:scribe.py

示例11: shared_floatx_zeros

# 需要导入模块: from blocks.bricks.sequence_generators import SequenceGenerator [as 别名]
# 或者: from blocks.bricks.sequence_generators.SequenceGenerator import cost_matrix [as 别名]
generator.transition.push_initialization_config()

generator.initialize()

states = {}
states = generator.transition.apply.outputs

states = {name: shared_floatx_zeros((batch_size, hidden_size_recurrent))
        for name in states}

x_tr=next(data_stream.get_epoch_iterator())
#ipdb.set_trace()

print function([f0,voiced], mlp_context.apply(context))(x_tr[0],x_tr[2]).shape

cost_matrix = generator.cost_matrix(x, attended = mlp_context.apply(context))# , **states)

print function([f0,x,voiced], cost_matrix)(x_tr[0],x_tr[1],x_tr[2]).shape

cost = cost_matrix.mean() + 0.*start_flag
cost.name = "nll"

cg = ComputationGraph(cost)
model = Model(cost)

transition_matrix = VariableFilter(
            theano_name_regex="state_to_state")(cg.parameters)
for matr in transition_matrix:
    matr.set_value(0.98*numpy.eye(hidden_size_recurrent, dtype=floatX))

from play.utils import regex_final_value
开发者ID:anirudh9119,项目名称:SpeechSyn,代码行数:33,代码来源:sp_conditional_f0.py

示例12: main

# 需要导入模块: from blocks.bricks.sequence_generators import SequenceGenerator [as 别名]
# 或者: from blocks.bricks.sequence_generators.SequenceGenerator import cost_matrix [as 别名]
def main(mode, save_path, steps, num_batches, load_params):
    chars = (list(string.ascii_uppercase) + list(range(10)) +
             [' ', '.', ',', '\'', '"', '!', '?', '<UNK>'])
    char_to_ind = {char: i for i, char in enumerate(chars)}
    ind_to_char = {v: k for k, v in char_to_ind.iteritems()}

    train_dataset = TextFile(['/Tmp/serdyuk/data/wsj_text_train'],
                             char_to_ind, bos_token=None, eos_token=None,
                             level='character')
    valid_dataset = TextFile(['/Tmp/serdyuk/data/wsj_text_valid'],
                             char_to_ind, bos_token=None, eos_token=None,
                             level='character')

    vocab_size = len(char_to_ind)
    logger.info('Dictionary size: {}'.format(vocab_size))
    if mode == 'continue':
        continue_training(save_path)
        return
    elif mode == "sample":
        main_loop = load(open(save_path, "rb"))
        generator = main_loop.model.get_top_bricks()[-1]

        sample = ComputationGraph(generator.generate(
            n_steps=steps, batch_size=1, iterate=True)).get_theano_function()

        states, outputs, costs = [data[:, 0] for data in sample()]
        print("".join([ind_to_char[s] for s in outputs]))

        numpy.set_printoptions(precision=3, suppress=True)
        print("Generation cost:\n{}".format(costs.sum()))

        freqs = numpy.bincount(outputs).astype(floatX)
        freqs /= freqs.sum()

        trans_freqs = numpy.zeros((vocab_size, vocab_size), dtype=floatX)
        for a, b in zip(outputs, outputs[1:]):
            trans_freqs[a, b] += 1
        trans_freqs /= trans_freqs.sum(axis=1)[:, None]
        return

    # Experiment configuration
    batch_size = 20
    dim = 650
    feedback_dim = 650

    valid_stream = valid_dataset.get_example_stream()
    valid_stream = Batch(valid_stream,
                         iteration_scheme=ConstantScheme(batch_size))
    valid_stream = Padding(valid_stream)
    valid_stream = Mapping(valid_stream, _transpose)

    # Build the bricks and initialize them

    transition = GatedRecurrent(name="transition", dim=dim,
                                activation=Tanh())
    generator = SequenceGenerator(
        Readout(readout_dim=vocab_size, source_names=transition.apply.states,
                emitter=SoftmaxEmitter(name="emitter"),
                feedback_brick=LookupFeedback(
                    vocab_size, feedback_dim, name='feedback'),
                name="readout"),
        transition,
        weights_init=Uniform(std=0.04), biases_init=Constant(0),
        name="generator")
    generator.push_initialization_config()
    transition.weights_init = Orthogonal()
    transition.push_initialization_config()
    generator.initialize()

    # Build the cost computation graph.
    features = tensor.lmatrix('features')
    features_mask = tensor.matrix('features_mask')
    cost_matrix = generator.cost_matrix(
        features, mask=features_mask)
    batch_cost = cost_matrix.sum()
    cost = aggregation.mean(
        batch_cost,
        features.shape[1])
    cost.name = "sequence_log_likelihood"
    char_cost = aggregation.mean(
        batch_cost, features_mask.sum())
    char_cost.name = 'character_log_likelihood'
    ppl = 2 ** (cost / numpy.log(2))
    ppl.name = 'ppl'
    bits_per_char = char_cost / tensor.log(2)
    bits_per_char.name = 'bits_per_char'
    length = features.shape[0]
    length.name = 'length'

    model = Model(batch_cost)
    if load_params:
        params = load_parameter_values(save_path)
        model.set_parameter_values(params)

    if mode == "train":
        # Give an idea of what's going on.
        logger.info("Parameters:\n" +
                    pprint.pformat(
                        [(key, value.get_value().shape) for key, value
                         in Selector(generator).get_parameters().items()],
#.........这里部分代码省略.........
开发者ID:dmitriy-serdyuk,项目名称:lm_experiments,代码行数:103,代码来源:main.py

示例13: test_sequence_generator_with_lm

# 需要导入模块: from blocks.bricks.sequence_generators import SequenceGenerator [as 别名]
# 或者: from blocks.bricks.sequence_generators.SequenceGenerator import cost_matrix [as 别名]
def test_sequence_generator_with_lm():
    floatX = theano.config.floatX
    rng = numpy.random.RandomState(1234)

    readout_dim = 5
    feedback_dim = 3
    dim = 20
    batch_size = 30
    n_steps = 10

    transition = GatedRecurrent(dim=dim, activation=Tanh(),
                                weights_init=Orthogonal())
    language_model = SequenceGenerator(
        Readout(readout_dim=readout_dim, source_names=["states"],
                emitter=SoftmaxEmitter(theano_seed=1234),
                feedback_brick=LookupFeedback(readout_dim, dim,
                                              name='feedback')),
        SimpleRecurrent(dim, Tanh()),
        name='language_model')
    generator = SequenceGenerator(
        Readout(readout_dim=readout_dim, source_names=["states", "lm_states"],
                emitter=SoftmaxEmitter(theano_seed=1234),
                feedback_brick=LookupFeedback(readout_dim,
                                              feedback_dim)),
        transition,
        language_model=language_model,
        weights_init=IsotropicGaussian(0.1), biases_init=Constant(0),
        seed=1234)
    generator.initialize()

    # Test 'cost_matrix' method
    y = tensor.lmatrix('y')
    y.tag.test_value = numpy.zeros((15, batch_size), dtype='int64')
    mask = tensor.matrix('mask')
    mask.tag.test_value = numpy.ones((15, batch_size))

    costs = generator.cost_matrix(y, mask)
    assert costs.ndim == 2
    costs_fun = theano.function([y, mask], [costs])
    y_test = rng.randint(readout_dim, size=(n_steps, batch_size))
    m_test = numpy.ones((n_steps, batch_size), dtype=floatX)
    costs_val = costs_fun(y_test, m_test)[0]
    assert costs_val.shape == (n_steps, batch_size)
    assert_allclose(costs_val.sum(), 483.153, rtol=1e-5)

    # Test 'cost' method
    cost = generator.cost(y, mask)
    assert cost.ndim == 0
    cost_val = theano.function([y, mask], cost)(y_test, m_test)
    assert_allclose(cost_val, 16.105, rtol=1e-5)

    # Test 'AUXILIARY' variable 'per_sequence_element' in 'cost' method
    cg = ComputationGraph([cost])
    var_filter = VariableFilter(roles=[AUXILIARY])
    aux_var_name = '_'.join([generator.name, generator.cost.name,
                             'per_sequence_element'])
    cost_per_el = [el for el in var_filter(cg.variables)
                   if el.name == aux_var_name][0]
    assert cost_per_el.ndim == 0
    cost_per_el_val = theano.function([y, mask], [cost_per_el])(y_test, m_test)
    assert_allclose(cost_per_el_val, 1.61051, rtol=1e-5)

    # Test generate
    states, outputs, lm_states, costs = generator.generate(
        iterate=True, batch_size=batch_size, n_steps=n_steps)
    cg = ComputationGraph([states, outputs, costs])
    states_val, outputs_val, costs_val = theano.function(
        [], [states, outputs, costs],
        updates=cg.updates)()
    assert states_val.shape == (n_steps, batch_size, dim)
    assert outputs_val.shape == (n_steps, batch_size)
    assert outputs_val.dtype == 'int64'
    assert costs_val.shape == (n_steps, batch_size)
    assert_allclose(states_val.sum(), -4.88367, rtol=1e-5)
    assert_allclose(costs_val.sum(), 486.681, rtol=1e-5)
    assert outputs_val.sum() == 627

    # Test masks agnostic results of cost
    cost1 = costs_fun([[1], [2]], [[1], [1]])[0]
    cost2 = costs_fun([[3, 1], [4, 2], [2, 0]],
                      [[1, 1], [1, 1], [1, 0]])[0]
    assert_allclose(cost1.sum(), cost2[:, 1].sum(), rtol=1e-5)
开发者ID:DingKe,项目名称:attention-lvcsr,代码行数:84,代码来源:test_sequence_generators.py

示例14: main_rnn

# 需要导入模块: from blocks.bricks.sequence_generators import SequenceGenerator [as 别名]
# 或者: from blocks.bricks.sequence_generators.SequenceGenerator import cost_matrix [as 别名]
def main_rnn(config):

    x = tensor.tensor3('features')
    y = tensor.matrix('targets')

#    if 'LSTM' in config['model'] :
#        from models import getLSTMstack
#        y_hat = getLSTMstack(input_dim=13, input_var=x, depth=int(config['model'][-1]))
#    else :
#        raise Exception("These are not the LSTM we are looking for")

#    y_hat = model.apply(x)
    

    emitter = TestEmitter()
#    emitter = TrivialEmitter(readout_dim=config['lstm_hidden_size'])

#    cost_func = SquaredError()

 #   @application
 #   def qwe(self, readouts, outputs=None):
 #       print(type(self), type(readouts))
 #       x = cost_func.apply(readouts,outputs)
 #       return x
    print(type(emitter.cost))
 #   emitter.cost = qwe
  #  print(type(qwe))

    steps = 2 
    n_samples= config['target_size']

    transition = [LSTM(config['lstm_hidden_size']) for _ in range(4)]
    transition = RecurrentStack(transition,
            name="transition", skip_connections=False)

    source_names = [name for name in transition.apply.states if 'states' in name]

    readout = Readout(emitter, readout_dim=config['lstm_hidden_size'], source_names=source_names,feedback_brick=None, merge=None, merge_prototype=None, post_merge=None, merged_dim=None)

    seqgen = SequenceGenerator(readout, transition, attention=None, add_contexts=False)
    seqgen.weights_init = IsotropicGaussian(0.01)
    seqgen.biases_init = Constant(0.)
    seqgen.push_initialization_config()

    seqgen.transition.biases_init = IsotropicGaussian(0.01,1)
    seqgen.transition.push_initialization_config()
    seqgen.initialize()

    states = seqgen.transition.apply.outputs
    print('states',states)
    states = {name: shared_floatx_zeros((n_samples, config['lstm_hidden_size']))
        for name in states}

    cost_matrix = seqgen.cost_matrix(x, **states)
    cost = cost_matrix.mean()
    cost.name = "nll"

    cg = ComputationGraph(cost)
    model = Model(cost)
    #Cost
#    cost = SquaredError().apply(y_hat ,y)
    #cost = CategoricalCrossEntropy().apply(T.flatten(),Y)
 #   

        #for sampling
    #cg = ComputationGraph(seqgen.generate(n_steps=steps,batch_size=n_samples, iterate=True))
  

    algorithm = GradientDescent(
        cost=cost, parameters=cg.parameters,
        step_rule=Scale(learning_rate=config['learning_rate']))



    #Getting the stream
    train_stream = MFCC.get_stream(config['batch_size'],config['source_size'],config['target_size'],config['num_examples'])


    #Monitoring stuff
    extensions = [Timing(),
                  FinishAfter(after_n_batches=config['num_batches']),
                  #DataStreamMonitoring([cost, error_rate],test_stream,prefix="test"),
                  TrainingDataMonitoring([cost], prefix="train", every_n_batches=1),
                  #Checkpoint(save_to),
                  ProgressBar(),
                  Printing(every_n_batches=1)]
   

    main_loop = MainLoop(
        algorithm,
        train_stream,
 #       model=model,
        extensions=extensions)

    main_loop.run()
开发者ID:DjAntaki,项目名称:IFT6266H16,代码行数:97,代码来源:rnn_main.py

示例15: test_sequence_generator

# 需要导入模块: from blocks.bricks.sequence_generators import SequenceGenerator [as 别名]
# 或者: from blocks.bricks.sequence_generators.SequenceGenerator import cost_matrix [as 别名]
def test_sequence_generator():
    """Test a sequence generator with no contexts and continuous outputs.

    Such sequence generators can be used to model e.g. dynamical systems.

    """
    rng = numpy.random.RandomState(1234)

    output_dim = 1
    dim = 20
    batch_size = 30
    n_steps = 10

    transition = SimpleRecurrent(activation=Tanh(), dim=dim,
                                 weights_init=Orthogonal())
    generator = SequenceGenerator(
        Readout(readout_dim=output_dim, source_names=["states"],
                emitter=TestEmitter()),
        transition,
        weights_init=IsotropicGaussian(0.1), biases_init=Constant(0.0),
        seed=1234)
    generator.initialize()

    # Test 'cost_matrix' method
    y = tensor.tensor3('y')
    mask = tensor.matrix('mask')
    costs = generator.cost_matrix(y, mask)
    assert costs.ndim == 2
    y_test = rng.uniform(size=(n_steps, batch_size, output_dim)).astype(floatX)
    m_test = numpy.ones((n_steps, batch_size), dtype=floatX)
    costs_val = theano.function([y, mask], [costs])(y_test, m_test)[0]
    assert costs_val.shape == (n_steps, batch_size)
    assert_allclose(costs_val.sum(), 115.593, rtol=1e-5)

    # Test 'cost' method
    cost = generator.cost(y, mask)
    assert cost.ndim == 0
    cost_val = theano.function([y, mask], [cost])(y_test, m_test)
    assert_allclose(cost_val, 3.8531, rtol=1e-5)

    # Test 'AUXILIARY' variable 'per_sequence_element' in 'cost' method
    cg = ComputationGraph([cost])
    var_filter = VariableFilter(roles=[AUXILIARY])
    aux_var_name = '_'.join([generator.name, generator.cost.name,
                             'per_sequence_element'])
    cost_per_el = [el for el in var_filter(cg.variables)
                   if el.name == aux_var_name][0]
    assert cost_per_el.ndim == 0
    cost_per_el_val = theano.function([y, mask], [cost_per_el])(y_test, m_test)
    assert_allclose(cost_per_el_val, 0.38531, rtol=1e-5)

    # Test 'generate' method
    states, outputs, costs = [variable.eval() for variable in
                              generator.generate(
                                  states=rng.uniform(
                                      size=(batch_size, dim)).astype(floatX),
                                  iterate=True, batch_size=batch_size,
                                  n_steps=n_steps)]
    assert states.shape == (n_steps, batch_size, dim)
    assert outputs.shape == (n_steps, batch_size, output_dim)
    assert costs.shape == (n_steps, batch_size)
    assert_allclose(outputs.sum(), -0.33683, rtol=1e-5)
    assert_allclose(states.sum(), 15.7909, rtol=1e-5)
    # There is no generation cost in this case, since generation is
    # deterministic
    assert_allclose(costs.sum(), 0.0)
开发者ID:Fdenpc,项目名称:blocks,代码行数:68,代码来源:test_sequence_generators.py


注:本文中的blocks.bricks.sequence_generators.SequenceGenerator.cost_matrix方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。