本文整理汇总了Python中blocks.bricks.recurrent.SimpleRecurrent.initial_state方法的典型用法代码示例。如果您正苦于以下问题:Python SimpleRecurrent.initial_state方法的具体用法?Python SimpleRecurrent.initial_state怎么用?Python SimpleRecurrent.initial_state使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类blocks.bricks.recurrent.SimpleRecurrent
的用法示例。
在下文中一共展示了SimpleRecurrent.initial_state方法的1个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: main
# 需要导入模块: from blocks.bricks.recurrent import SimpleRecurrent [as 别名]
# 或者: from blocks.bricks.recurrent.SimpleRecurrent import initial_state [as 别名]
#.........这里部分代码省略.........
weights_init=Uniform(std=0.01),
biases_init=Constant(0.)
)
score_layer.initialize()
embedding = (linear_embedding.apply(x_int[:-1])
* tensor.shape_padright(m.T[1:]))
rnn_out = rnn.apply(inputs=embedding, mask=m.T[1:])
probs = softmax(
sequence_map(score_layer.apply, rnn_out, mask=m.T[1:])[0]
)
idx_mask = m.T[1:].nonzero()
cost = CategoricalCrossEntropy().apply(
x_int[1:][idx_mask[0], idx_mask[1]],
probs[idx_mask[0], idx_mask[1]]
)
cost.name = 'cost'
misclassification = MisclassificationRate().apply(
x_int[1:][idx_mask[0], idx_mask[1]],
probs[idx_mask[0], idx_mask[1]]
)
misclassification.name = 'misclassification'
cg = ComputationGraph([cost])
params = cg.parameters
algorithm = GradientDescent(
cost=cost,
params=params,
step_rule=Adam()
)
train_data_stream = Padding(
data_stream=DataStream(
dataset=train_dataset,
iteration_scheme=BatchwiseShuffledScheme(
examples=train_dataset.num_examples,
batch_size=10,
)
),
mask_sources=('features',)
)
model = Model(cost)
extensions = []
extensions.append(Timing())
extensions.append(FinishAfter(after_n_epochs=num_epochs))
extensions.append(TrainingDataMonitoring(
[cost, misclassification],
prefix='train',
after_epoch=True))
batch_size = 10
length = 30
trng = MRG_RandomStreams(18032015)
u = trng.uniform(size=(length, batch_size, n_voc))
gumbel_noise = -tensor.log(-tensor.log(u))
init_samples = (tensor.log(init_probs).dimshuffle(('x', 0))
+ gumbel_noise[0]).argmax(axis=-1)
init_states = rnn.initial_state('states', batch_size)
def sampling_step(g_noise, states, samples_step):
embedding_step = linear_embedding.apply(samples_step)
next_states = rnn.apply(inputs=embedding_step,
states=states,
iterate=False)
probs_step = softmax(score_layer.apply(next_states))
next_samples = (tensor.log(probs_step)
+ g_noise).argmax(axis=-1)
return next_states, next_samples
[_, samples], _ = theano.scan(
fn=sampling_step,
sequences=[gumbel_noise[1:]],
outputs_info=[init_states, init_samples]
)
sampling = theano.function([], samples.owner.inputs[0].T)
plotters = []
plotters.append(Plotter(
channels=[['train_cost', 'train_misclassification']],
titles=['Costs']))
extensions.append(PlotManager('Language modelling example',
plotters=plotters,
after_epoch=True,
after_training=True))
extensions.append(Printing())
extensions.append(PrintSamples(sampler=sampling,
voc=train_dataset.inv_dict))
main_loop = MainLoop(model=model,
data_stream=train_data_stream,
algorithm=algorithm,
extensions=extensions)
main_loop.run()