当前位置: 首页>>代码示例>>Python>>正文


Python LSTM.initial_state方法代码示例

本文整理汇总了Python中blocks.bricks.recurrent.LSTM.initial_state方法的典型用法代码示例。如果您正苦于以下问题:Python LSTM.initial_state方法的具体用法?Python LSTM.initial_state怎么用?Python LSTM.initial_state使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在blocks.bricks.recurrent.LSTM的用法示例。


在下文中一共展示了LSTM.initial_state方法的2个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: Model

# 需要导入模块: from blocks.bricks.recurrent import LSTM [as 别名]
# 或者: from blocks.bricks.recurrent.LSTM import initial_state [as 别名]
class Model(Initializable):
    @lazy()
    def __init__(self, config, **kwargs):
        super(Model, self).__init__(**kwargs)
        self.config = config

        self.pre_context_embedder = ContextEmbedder(config.pre_embedder, name='pre_context_embedder')
        self.post_context_embedder = ContextEmbedder(config.post_embedder, name='post_context_embedder')

        in1 = 2 + sum(x[2] for x in config.pre_embedder.dim_embeddings)
        self.input_to_rec = MLP(activations=[Tanh()], dims=[in1, config.hidden_state_dim], name='input_to_rec')

        self.rec = LSTM(
                dim = config.hidden_state_dim,
                name = 'recurrent'
            )

        in2 = config.hidden_state_dim + sum(x[2] for x in config.post_embedder.dim_embeddings)
        self.rec_to_output = MLP(activations=[Tanh()], dims=[in2, 2], name='rec_to_output')

        self.sequences = ['latitude', 'latitude_mask', 'longitude']
        self.context = self.pre_context_embedder.inputs + self.post_context_embedder.inputs
        self.inputs = self.sequences + self.context
        self.children = [ self.pre_context_embedder, self.post_context_embedder, self.input_to_rec, self.rec, self.rec_to_output ]

        self.initial_state_ = shared_floatx_zeros((config.hidden_state_dim,),
                name="initial_state")
        self.initial_cells = shared_floatx_zeros((config.hidden_state_dim,),
                name="initial_cells")

    def _push_initialization_config(self):
        for mlp in [self.input_to_rec, self.rec_to_output]:
            mlp.weights_init = self.config.weights_init
            mlp.biases_init = self.config.biases_init
        self.rec.weights_init = self.config.weights_init

    def get_dim(self, name):
        return self.rec.get_dim(name)

    @application
    def initial_state(self, *args, **kwargs):
        return self.rec.initial_state(*args, **kwargs)

    @recurrent(states=['states', 'cells'], outputs=['destination', 'states', 'cells'], sequences=['latitude', 'longitude', 'latitude_mask'])
    def predict_all(self, latitude, longitude, latitude_mask, **kwargs):
        latitude = (latitude - data.train_gps_mean[0]) / data.train_gps_std[0]
        longitude = (longitude - data.train_gps_mean[1]) / data.train_gps_std[1]

        pre_emb = tuple(self.pre_context_embedder.apply(**kwargs))
        latitude = tensor.shape_padright(latitude)
        longitude = tensor.shape_padright(longitude)
        itr = self.input_to_rec.apply(tensor.concatenate(pre_emb + (latitude, longitude), axis=1))
        itr = itr.repeat(4, axis=1)
        (next_states, next_cells) = self.rec.apply(itr, kwargs['states'], kwargs['cells'], mask=latitude_mask, iterate=False)

        post_emb = tuple(self.post_context_embedder.apply(**kwargs))
        rto = self.rec_to_output.apply(tensor.concatenate(post_emb + (next_states,), axis=1))

        rto = (rto * data.train_gps_std) + data.train_gps_mean
        return (rto, next_states, next_cells)

    @predict_all.property('contexts')
    def predict_all_inputs(self):
        return self.context

    @application(outputs=['destination'])
    def predict(self, latitude, longitude, latitude_mask, **kwargs):
        latitude = latitude.T
        longitude = longitude.T
        latitude_mask = latitude_mask.T
        res = self.predict_all(latitude, longitude, latitude_mask, **kwargs)[0]
        return res[-1]

    @predict.property('inputs')
    def predict_inputs(self):
        return self.inputs

    @application(outputs=['cost_matrix'])
    def cost_matrix(self, latitude, longitude, latitude_mask, **kwargs):
        latitude = latitude.T
        longitude = longitude.T
        latitude_mask = latitude_mask.T

        res = self.predict_all(latitude, longitude, latitude_mask, **kwargs)[0]
        target = tensor.concatenate(
                    (kwargs['destination_latitude'].dimshuffle('x', 0, 'x'),
                     kwargs['destination_longitude'].dimshuffle('x', 0, 'x')),
                axis=2)
        target = target.repeat(latitude.shape[0], axis=0)
        ce = error.erdist(target.reshape((-1, 2)), res.reshape((-1, 2)))
        ce = ce.reshape(latitude.shape)
        return ce * latitude_mask

    @cost_matrix.property('inputs')
    def cost_matrix_inputs(self):
        return self.inputs + ['destination_latitude', 'destination_longitude']

    @application(outputs=['cost'])
    def cost(self, latitude_mask, **kwargs):
        return self.cost_matrix(latitude_mask=latitude_mask, **kwargs).sum() / latitude_mask.sum()
#.........这里部分代码省略.........
开发者ID:JimStearns206,项目名称:taxi,代码行数:103,代码来源:rnn.py

示例2: main

# 需要导入模块: from blocks.bricks.recurrent import LSTM [as 别名]
# 或者: from blocks.bricks.recurrent.LSTM import initial_state [as 别名]

#.........这里部分代码省略.........

    embedding = (linear_embedding.apply(x_int[:-1])
                 * tensor.shape_padright(m.T[1:]))
    rnn_out = rnn.apply(inputs=embedding, mask=m.T[1:])
    probs = softmax(
        sequence_map(score_layer.apply, rnn_out[0], mask=m.T[1:])[0]
    )
    idx_mask = m.T[1:].nonzero()
    cost = CategoricalCrossEntropy().apply(
        x_int[1:][idx_mask[0], idx_mask[1]],
        probs[idx_mask[0], idx_mask[1]]
    )
    cost.name = 'cost'
    misclassification = MisclassificationRate().apply(
        x_int[1:][idx_mask[0], idx_mask[1]],
        probs[idx_mask[0], idx_mask[1]]
    )
    misclassification.name = 'misclassification'

    cg = ComputationGraph([cost])
    params = cg.parameters

    algorithm = GradientDescent(
        cost=cost,
        params=params,
        step_rule=CompositeRule(
            [StepClipping(10.),
             Adam()])
    )

    train_data_stream = Padding(
        data_stream=DataStream(
            dataset=train_dataset,
            iteration_scheme=BatchwiseShuffledScheme(
                examples=train_dataset.num_examples,
                batch_size=10,
            )
        ),
        mask_sources=('features',)
    )

    model = Model(cost)

    extensions = []
    extensions.append(Timing())
    extensions.append(FinishAfter(after_n_epochs=num_epochs))
    extensions.append(TrainingDataMonitoring(
        [cost, misclassification],
        prefix='train',
        after_epoch=True))

    batch_size = 10
    length = 30
    trng = MRG_RandomStreams(18032015)
    u = trng.uniform(size=(length, batch_size, n_voc))
    gumbel_noise = -tensor.log(-tensor.log(u))
    init_samples = (tensor.log(init_probs).dimshuffle(('x', 0))
                    + gumbel_noise[0]).argmax(axis=-1)
    init_states = rnn.initial_state('states', batch_size)
    init_cells = rnn.initial_state('cells', batch_size)

    def sampling_step(g_noise, states, cells, samples_step):
        embedding_step = linear_embedding.apply(samples_step)
        next_states, next_cells = rnn.apply(inputs=embedding_step,
                                            states=states,
                                            cells=cells,
                                            iterate=False)
        probs_step = softmax(score_layer.apply(next_states))
        next_samples = (tensor.log(probs_step)
                        + g_noise).argmax(axis=-1)

        return next_states, next_cells, next_samples

    [_, _, samples], _ = theano.scan(
        fn=sampling_step,
        sequences=[gumbel_noise[1:]],
        outputs_info=[init_states, init_cells, init_samples]
    )

    sampling = theano.function([], samples.owner.inputs[0].T)

    plotters = []
    plotters.append(Plotter(
        channels=[['train_cost', 'train_misclassification']],
        titles=['Costs']))

    extensions.append(PlotManager('Language modelling example',
                                  plotters=plotters,
                                  after_epoch=True,
                                  after_training=True))
    extensions.append(Printing())
    extensions.append(PrintSamples(sampler=sampling,
                                   voc=train_dataset.inv_dict))

    main_loop = MainLoop(model=model,
                         data_stream=train_data_stream,
                         algorithm=algorithm,
                         extensions=extensions)

    main_loop.run()
开发者ID:adrianogil,项目名称:dl_tutorials,代码行数:104,代码来源:rnn_nlp_main.py


注:本文中的blocks.bricks.recurrent.LSTM.initial_state方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。