当前位置: 首页>>代码示例>>Python>>正文


Python NDimensionalSoftmax.apply方法代码示例

本文整理汇总了Python中blocks.bricks.NDimensionalSoftmax.apply方法的典型用法代码示例。如果您正苦于以下问题:Python NDimensionalSoftmax.apply方法的具体用法?Python NDimensionalSoftmax.apply怎么用?Python NDimensionalSoftmax.apply使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在blocks.bricks.NDimensionalSoftmax的用法示例。


在下文中一共展示了NDimensionalSoftmax.apply方法的9个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: create_rnn

# 需要导入模块: from blocks.bricks import NDimensionalSoftmax [as 别名]
# 或者: from blocks.bricks.NDimensionalSoftmax import apply [as 别名]
def create_rnn(hidden_dim, vocab_dim,mode="rnn"):
    # input
    x = tensor.imatrix('inchar')
    y = tensor.imatrix('outchar')

    # 
    W = LookupTable(
        name = "W1",
        #dim = hidden_dim*4,
        dim = hidden_dim,
        length = vocab_dim,
        weights_init = initialization.IsotropicGaussian(0.01),
        biases_init = initialization.Constant(0)
    )
    if mode == "lstm":
        # Long Short Term Memory
        H = LSTM(
            hidden_dim, 
            name = 'H',
            weights_init = initialization.IsotropicGaussian(0.01),
            biases_init = initialization.Constant(0.0)
        )
    else:
        # recurrent history weight
        H = SimpleRecurrent(
            name = "H",
            dim = hidden_dim,
            activation = Tanh(),
            weights_init = initialization.IsotropicGaussian(0.01)
        )
    # 
    S = Linear(
        name = "W2",
        input_dim = hidden_dim,
        output_dim = vocab_dim,
        weights_init = initialization.IsotropicGaussian(0.01),
        biases_init = initialization.Constant(0)
    )

    A = NDimensionalSoftmax(
        name = "softmax"
    )

    initLayers([W,H,S])
    activations = W.apply(x)
    hiddens = H.apply(activations)#[0]
    activations2 = S.apply(hiddens)
    y_hat = A.apply(activations2, extra_ndim=1)
    cost = A.categorical_cross_entropy(y, activations2, extra_ndim=1).mean()

    cg = ComputationGraph(cost)
    #print VariableFilter(roles=[WEIGHT])(cg.variables)
    #W1,H,W2 = VariableFilter(roles=[WEIGHT])(cg.variables)

    layers = (x, W, H, S, A, y)

    return  cg, layers, y_hat, cost
开发者ID:Rene90,项目名称:dl4nlp,代码行数:59,代码来源:rnn_model.py

示例2: softmax_layer

# 需要导入模块: from blocks.bricks import NDimensionalSoftmax [as 别名]
# 或者: from blocks.bricks.NDimensionalSoftmax import apply [as 别名]
def softmax_layer(h, y, frame_length, hidden_size):
    hidden_to_output = Linear(name="hidden_to_output", input_dim=hidden_size, output_dim=frame_length)
    initialize([hidden_to_output])
    linear_output = hidden_to_output.apply(h)
    linear_output.name = "linear_output"
    softmax = NDimensionalSoftmax()
    y_hat = softmax.apply(linear_output, extra_ndim=1)
    y_hat.name = "y_hat"
    cost = softmax.categorical_cross_entropy(y, linear_output, extra_ndim=1).mean()
    cost.name = "cost"
    return y_hat, cost
开发者ID:teganmaharaj,项目名称:deeplearningclass,代码行数:13,代码来源:model.py

示例3: softmax_layer

# 需要导入模块: from blocks.bricks import NDimensionalSoftmax [as 别名]
# 或者: from blocks.bricks.NDimensionalSoftmax import apply [as 别名]
def softmax_layer(h, y, vocab_size, hidden_size):
    hidden_to_output = Linear(name='hidden_to_output', input_dim=hidden_size,
                              output_dim=vocab_size)
    initialize([hidden_to_output])
    linear_output = hidden_to_output.apply(h)
    linear_output.name = 'linear_output'
    softmax = NDimensionalSoftmax()
    y_hat = softmax.apply(linear_output, extra_ndim=1)
    y_hat.name = 'y_hat'
    cost = softmax.categorical_cross_entropy(
        y, linear_output, extra_ndim=1).mean()
    cost.name = 'cost'
    return y_hat, cost
开发者ID:ixtel,项目名称:blocks-char-rnn,代码行数:15,代码来源:model.py

示例4: SoftmaxEmitter

# 需要导入模块: from blocks.bricks import NDimensionalSoftmax [as 别名]
# 或者: from blocks.bricks.NDimensionalSoftmax import apply [as 别名]
class SoftmaxEmitter(AbstractEmitter, Initializable, Random):
    """A softmax emitter for the case of integer outputs.

    Interprets readout elements as energies corresponding to their indices.

    Parameters
    ----------
    initial_output : int or a scalar :class:`~theano.Variable`
        The initial output.

    """
    def __init__(self, initial_output=0, **kwargs):
        super(SoftmaxEmitter, self).__init__(**kwargs)
        self.initial_output = initial_output
        self.softmax = NDimensionalSoftmax()
        self.children = [self.softmax]

    @application
    def probs(self, readouts):
        return self.softmax.apply(readouts, extra_ndim=readouts.ndim - 2)

    @application
    def emit(self, readouts):
        probs = self.probs(readouts)
        batch_size = probs.shape[0]
        pvals_flat = probs.reshape((batch_size, -1))
        generated = self.theano_rng.multinomial(pvals=pvals_flat)
        return generated.reshape(probs.shape).argmax(axis=-1)

    @application
    def cost(self, readouts, outputs):
        # WARNING: unfortunately this application method works
        # just fine when `readouts` and `outputs` have
        # different dimensions. Be careful!
        return self.softmax.categorical_cross_entropy(
            outputs, readouts, extra_ndim=readouts.ndim - 2)

    @application
    def costs(self, readouts):
        return -self.softmax.log_probabilities(
            readouts, extra_ndim=readouts.ndim - 2)

    @application
    def initial_outputs(self, batch_size):
        return self.initial_output * tensor.ones((batch_size,), dtype='int64')

    def get_dim(self, name):
        if name == 'outputs':
            return 0
        return super(SoftmaxEmitter, self).get_dim(name)
开发者ID:ZhangAustin,项目名称:attention-lvcsr,代码行数:52,代码来源:sequence_generators.py

示例5: GMMMLP

# 需要导入模块: from blocks.bricks import NDimensionalSoftmax [as 别名]
# 或者: from blocks.bricks.NDimensionalSoftmax import apply [as 别名]
class GMMMLP(Initializable):
    """An mlp brick that branchs out to output
    sigma and mu for GMM
    Parameters
    ----------
    mlp: MLP brick
        the main mlp to wrap around.
    dim:
        output dim
    """
    def __init__(self, mlp, dim, k, const=1e-5, **kwargs):
        super(GMMMLP, self).__init__(**kwargs)

        self.dim = dim
        self.const = const
        self.k = k
        input_dim = mlp.output_dim
        self.mu = MLP(activations=[Identity()],
                      dims=[input_dim, dim],
                      name=self.name + "_mu")
        self.sigma = MLP(activations=[SoftPlus()],
                         dims=[input_dim, dim],
                         name=self.name + "_sigma")

        self.coeff = MLP(activations=[Identity()],
                         dims=[input_dim, k],
                         name=self.name + "_coeff")


        self.coeff2 = NDimensionalSoftmax()
        self.mlp = mlp
        self.children = [self.mlp, self.mu, 
                         self.sigma, self.coeff, self.coeff2]
        #self.children.extend(self.mlp.children)

    @application
    def apply(self, inputs):
        state = self.mlp.apply(inputs)
        mu = self.mu.apply(state)
        sigma = self.sigma.apply(state)
        coeff = self.coeff2.apply(self.coeff.apply(state),
            extra_ndim=state.ndim - 2) + self.const
        return mu, sigma, coeff

    @property
    def output_dim(self):
        return self.dim
开发者ID:donghyunlee,项目名称:play,代码行数:49,代码来源:custom.py

示例6: __init__

# 需要导入模块: from blocks.bricks import NDimensionalSoftmax [as 别名]
# 或者: from blocks.bricks.NDimensionalSoftmax import apply [as 别名]
    def __init__(self, input1_size, input2_size, lookup1_dim=200, lookup2_dim=200, hidden_size=512):
        self.hidden_size = hidden_size
        self.input1_size = input1_size
        self.input2_size = input2_size
        self.lookup1_dim = lookup1_dim
        self.lookup2_dim = lookup2_dim

        x1 = tensor.lmatrix('durations')
        x2 = tensor.lmatrix('syllables')
        y = tensor.lmatrix('pitches')

        lookup1 = LookupTable(dim=self.lookup1_dim, length=self.input1_size, name='lookup1',
                              weights_init=initialization.Uniform(width=0.01),
                              biases_init=Constant(0))
        lookup1.initialize()
        lookup2 = LookupTable(dim=self.lookup2_dim, length=self.input2_size, name='lookup2',
                              weights_init=initialization.Uniform(width=0.01),
                              biases_init=Constant(0))
        lookup2.initialize()
        merge = Merge(['lookup1', 'lookup2'], [self.lookup1_dim, self.lookup2_dim], self.hidden_size,
                              weights_init=initialization.Uniform(width=0.01),
                              biases_init=Constant(0))
        merge.initialize()
        recurrent_block = LSTM(dim=self.hidden_size, activation=Tanh(),
                              weights_init=initialization.Uniform(width=0.01)) #RecurrentStack([LSTM(dim=self.hidden_size, activation=Tanh())] * 3)
        recurrent_block.initialize()
        linear = Linear(input_dim=self.hidden_size, output_dim=self.input1_size,
                              weights_init=initialization.Uniform(width=0.01),
                              biases_init=Constant(0))
        linear.initialize()
        softmax = NDimensionalSoftmax()

        l1 = lookup1.apply(x1)
        l2 = lookup2.apply(x2)
        m = merge.apply(l1, l2)
        h = recurrent_block.apply(m)
        a = linear.apply(h)

        y_hat = softmax.apply(a, extra_ndim=1)
        # ValueError: x must be 1-d or 2-d tensor of floats. Got TensorType(float64, 3D)

        self.Cost = softmax.categorical_cross_entropy(y, a, extra_ndim=1).mean()

        self.ComputationGraph = ComputationGraph(self.Cost)

        self.Model = Model(y_hat)
开发者ID:sharpfun,项目名称:NeverEndingMusic,代码行数:48,代码来源:model.py

示例7: Linear

# 需要导入模块: from blocks.bricks import NDimensionalSoftmax [as 别名]
# 或者: from blocks.bricks.NDimensionalSoftmax import apply [as 别名]
rnn.initialize()

linear_output = Linear(
    name='linear_output',
    input_dim=hidden_layer_dim,
    output_dim=charset_size,
    weights_init=initialization.Uniform(width=0.01),
    biases_init=Constant(0))
linear_output.initialize()

softmax = NDimensionalSoftmax(name='ndim_softmax')

activation_input = lookup_input.apply(x)
hidden = rnn.apply(linear_input.apply(activation_input))
activation_output = linear_output.apply(hidden)
y_est = softmax.apply(activation_output, extra_ndim=1)

cost = softmax.categorical_cross_entropy(y, activation_output, extra_ndim=1).mean()


from blocks.graph import ComputationGraph
from blocks.algorithms import GradientDescent, Adam

cg = ComputationGraph([cost])

step_rules = [RMSProp(learning_rate=0.002, decay_rate=0.95), StepClipping(1.0)]


algorithm = GradientDescent(
    cost=cost,
    parameters=cg.parameters,
开发者ID:sharpfun,项目名称:NeverEndingMusic,代码行数:33,代码来源:run.py

示例8: FRNNEmitter

# 需要导入模块: from blocks.bricks import NDimensionalSoftmax [as 别名]
# 或者: from blocks.bricks.NDimensionalSoftmax import apply [as 别名]
class FRNNEmitter(AbstractEmitter, Initializable, Random):
    """An RNN emitter for the case of real outputs.
    Parameters
    ----------
    """

    def __init__(self, mlp, target_size, frame_size, k, frnn_hidden_size, frnn_step_size, const=1e-5, **kwargs):

        super(FRNNEmitter, self).__init__(**kwargs)

        self.mlp = mlp
        self.target_size = target_size
        self.frame_size = frame_size
        self.k = k
        self.frnn_hidden_size = frnn_hidden_size
        self.const = const
        self.input_dim = self.mlp.output_dim

        self.frnn_step_size = frnn_step_size

        # adding a step if the division is not exact.
        self.number_of_steps = frame_size // frnn_step_size
        self.last_steps = frame_size % frnn_step_size
        if self.last_steps != 0:
            self.number_of_steps += 1

        self.mu = MLP(activations=[Identity()], dims=[frnn_hidden_size, k * frnn_step_size], name=self.name + "_mu")
        self.sigma = MLP(
            activations=[SoftPlus()], dims=[frnn_hidden_size, k * frnn_step_size], name=self.name + "_sigma"
        )

        self.coeff = MLP(activations=[Identity()], dims=[frnn_hidden_size, k], name=self.name + "_coeff")

        self.coeff2 = NDimensionalSoftmax()

        self.frnn_initial_state = Linear(
            input_dim=self.input_dim, output_dim=frnn_hidden_size, name="frnn_initial_state"
        )

        # self.frnn_hidden = Linear(
        #    input_dim=frnn_hidden_size,
        #    output_dim=frnn_hidden_size,
        #    activation=Tanh(),
        #    name="frnn_hidden")

        self.frnn_activation = Tanh(name="frnn_activation")

        self.frnn_linear_transition_state = Linear(
            input_dim=frnn_hidden_size, output_dim=frnn_hidden_size, name="frnn_linear_transition_state"
        )

        self.frnn_linear_transition_input = Linear(
            input_dim=self.frnn_step_size, output_dim=frnn_hidden_size, name="frnn_linear_transition_input"
        )

        # self.frnn_linear_transition_output = Linear (
        #    input_dim = frnn_hidden_size,
        #    output_dim = self.rnn_hidden_dim,
        #    name="frnn_linear_transition_output")

        self.children = [
            self.mlp,
            self.mu,
            self.sigma,
            self.coeff,
            self.coeff2,
            self.frnn_initial_state,
            self.frnn_activation,
            self.frnn_linear_transition_state,
            self.frnn_linear_transition_input,
        ]

    @application
    def emit(self, readouts):
        """
        keep_parameters is True if mu,sigma,coeffs must be stacked and returned
        if false, only the result is given, the others will be empty list.

        """
        # initial state
        state = self.frnn_initial_state.apply(self.mlp.apply(readouts))

        results = []

        for i in range(self.number_of_steps):
            last_iteration = i == self.number_of_steps - 1

            # First generating distribution parameters and sampling.
            mu = self.mu.apply(state)
            sigma = self.sigma.apply(state) + self.const
            coeff = self.coeff2.apply(self.coeff.apply(state), extra_ndim=state.ndim - 2) + self.const

            shape_result = coeff.shape
            shape_result = tensor.set_subtensor(shape_result[-1], self.frnn_step_size)
            ndim_result = coeff.ndim

            mu = mu.reshape((-1, self.frnn_step_size, self.k))
            sigma = sigma.reshape((-1, self.frnn_step_size, self.k))
            coeff = coeff.reshape((-1, self.k))

#.........这里部分代码省略.........
开发者ID:TiSU32,项目名称:ift6266h16,代码行数:103,代码来源:frnn_model.py

示例9: get_metadata

# 需要导入模块: from blocks.bricks import NDimensionalSoftmax [as 别名]
# 或者: from blocks.bricks.NDimensionalSoftmax import apply [as 别名]
    parser.add_argument('-temperature', type=float,
                        default=1.0, help='temperature of sampling')
    args = parser.parse_args()

    # Define primetext
    ix_to_char, char_to_ix, vocab_size = get_metadata(hdf5_file)
    if args.primetext and len(args.primetext) > 0:
        primetext = ''.join(
            [ch for ch in args.primetext if ch in char_to_ix.keys()])
        x_curr = numpy.expand_dims(
            numpy.array([char_to_ix[ch] for ch in primetext], dtype='uint8'), axis=1)
    else:
        dev_stream = get_stream(hdf5_file, 'dev', batch_size)
        x_curr, y_curr = dev_stream.get_epoch_iterator().next()
        x_curr = x_curr[:, -1].reshape(seq_length, 1)

    print 'Loading model from {0}...'.format(args.model)
    main_loop = load(args.model)
    print 'Model loaded. Building prediction function...'
    model = main_loop.model
    y, x = model.inputs
    softmax = NDimensionalSoftmax()
    linear_output = [
        v for v in model.variables if v.name == 'linear_output'][0]
    y_hat = softmax.apply(linear_output, extra_ndim=1)
    predict = theano.function([x], y_hat)

    print 'Starting sampling'
    sample_string = sample(args.length, x_curr, predict, ix_to_char,
                           seed=args.seed, temperature=args.temperature)
开发者ID:ixtel,项目名称:blocks-char-rnn,代码行数:32,代码来源:sample.py


注:本文中的blocks.bricks.NDimensionalSoftmax.apply方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。