本文整理汇总了Python中astropy.cosmology.WMAP9.age方法的典型用法代码示例。如果您正苦于以下问题:Python WMAP9.age方法的具体用法?Python WMAP9.age怎么用?Python WMAP9.age使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类astropy.cosmology.WMAP9
的用法示例。
在下文中一共展示了WMAP9.age方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: load_model
# 需要导入模块: from astropy.cosmology import WMAP9 [as 别名]
# 或者: from astropy.cosmology.WMAP9 import age [as 别名]
def load_model(agelims=[], nbins_sfh=7, sigma=0.3, df=2, **extras):
# we'll need this to access specific model parameters
n = [p['name'] for p in model_params]
# first calculate t_universe at z=1
tuniv = WMAP9.age(1.0).value*1e9
# now construct the nonparametric SFH
# current scheme: last bin is 15% age of the Universe, first two are 0-30, 30-100
# remaining N-3 bins spaced equally in logarithmic space
tbinmax = (tuniv*0.85)
agelims = agelims[:2] + np.linspace(agelims[2],np.log10(tbinmax),nbins_sfh-2).tolist() + [np.log10(tuniv)]
agebins = np.array([agelims[:-1], agelims[1:]])
# load nvariables and agebins
model_params[n.index('agebins')]['N'] = nbins_sfh
model_params[n.index('agebins')]['init'] = agebins.T
model_params[n.index('mass')]['N'] = nbins_sfh
model_params[n.index('logsfr_ratios')]['N'] = nbins_sfh-1
model_params[n.index('logsfr_ratios')]['init'] = np.full(nbins_sfh-1,0.0) # constant SFH
model_params[n.index('logsfr_ratios')]['prior'] = priors.StudentT(mean=np.full(nbins_sfh-1,0.0),
scale=np.full(nbins_sfh-1,sigma),
df=np.full(nbins_sfh-1,df))
# insert redshift into model dictionary
model_params[n.index('zred')]['init'] = 0.0
return sedmodel.SedModel(model_params)
示例2: load_model
# 需要导入模块: from astropy.cosmology import WMAP9 [as 别名]
# 或者: from astropy.cosmology.WMAP9 import age [as 别名]
def load_model(alpha_sfh=0.2,agelims=None, **extras):
# we'll need this to access specific model parameters
n = [p['name'] for p in model_params]
# create SFH bins
zred = model_params[n.index('zred')]['init']
tuniv = WMAP9.age(zred).value
# now construct the nonparametric SFH
# current scheme: six bins, four spaced equally in logarithmic
# last bin is 15% age of the Universe, first two are 0-30, 30-100
tbinmax = (tuniv*0.85)*1e9
agelims = agelims[:2] + np.linspace(agelims[2],np.log10(tbinmax),len(agelims)-3).tolist() + [np.log10(tuniv*1e9)]
agebins = np.array([agelims[:-1], agelims[1:]])
ncomp = len(agelims) - 1
# load nvariables and agebins
model_params[n.index('agebins')]['N'] = ncomp
model_params[n.index('agebins')]['init'] = agebins.T
model_params[n.index('mass')]['N'] = ncomp
model_params[n.index('mass')]['init'] = np.full(ncomp,1e6)
model_params[n.index('mass')]['prior'] = priors.TopHat(mini=np.full(ncomp,1e5), maxi=np.full(ncomp,1e12))
return sedmodel.SedModel(model_params)
示例3: load_model
# 需要导入模块: from astropy.cosmology import WMAP9 [as 别名]
# 或者: from astropy.cosmology.WMAP9 import age [as 别名]
def load_model(objname=None, datdir=None, nbins_sfh=7, sigma=0.3, df=2, agelims=[], zred=None, runname=None, **extras):
# we'll need this to access specific model parameters
n = [p['name'] for p in model_params]
# first calculate redshift and corresponding t_universe
# if no redshift is specified, read from file
if zred is None:
datname = datdir + objname.split('_')[0] + '_' + runname + '.dat'
dat = ascii.read(datname)
idx = dat['phot_id'] == int(objname.split('_')[-1])
zred = float(dat['z_best'][idx])
tuniv = WMAP9.age(zred).value*1e9
model_params[n.index('zred')]['init'] = zred
# now construct the nonparametric SFH
# current scheme: last bin is 15% age of the Universe, first two are 0-30, 30-100
# remaining N-3 bins spaced equally in logarithmic space
tbinmax = (tuniv*0.85)
agelims = agelims[:2] + np.linspace(agelims[2],np.log10(tbinmax),nbins_sfh-2).tolist() + [np.log10(tuniv)]
agebins = np.array([agelims[:-1], agelims[1:]])
# load nvariables and agebins
model_params[n.index('agebins')]['N'] = nbins_sfh
model_params[n.index('agebins')]['init'] = agebins.T
model_params[n.index('mass')]['N'] = nbins_sfh
model_params[n.index('logsfr_ratios')]['N'] = nbins_sfh-1
model_params[n.index('logsfr_ratios')]['init'] = np.full(nbins_sfh-1,0.0) # constant SFH
model_params[n.index('logsfr_ratios')]['prior'] = priors.StudentT(mean=np.full(nbins_sfh-1,0.0),
scale=np.full(nbins_sfh-1,sigma),
df=np.full(nbins_sfh-1,df))
return sedmodel.SedModel(model_params)
示例4: load_model
# 需要导入模块: from astropy.cosmology import WMAP9 [as 别名]
# 或者: from astropy.cosmology.WMAP9 import age [as 别名]
def load_model(nbins_sfh=6,sigma=0.3,datfile=None,objname=None, **extras):
# we'll need this to access specific model parameters
n = [p['name'] for p in model_params]
# create SFH bins
with open(datfile,'r') as f:
data = json.load(f)
zred = float(data[objname]['redshift'])
model_params[n.index('zred')]['init'] = zred
tuniv = WMAP9.age(zred).value*1e9
# now construct the nonparametric SFH
# set number of components
# set logsfr_ratio prior
# propagate to agebins
model_params[n.index('agebins')]['N'] = nbins_sfh
model_params[n.index('mass')]['N'] = nbins_sfh
model_params[n.index('logsfr_ratios')]['N'] = nbins_sfh-1
model_params[n.index('logsfr_ratios')]['init'] = np.full(nbins_sfh-1,0.0) # constant SFH
model_params[n.index('logsfr_ratios')]['prior'] = SFR_Ratio(mean=np.full(nbins_sfh-1,0.0),sigma=np.full(nbins_sfh-1,sigma))
model_params.append({'name': 'tuniv', 'N': 1,
'isfree': False,
'init': tuniv})
# set mass-metallicity prior
model_params[n.index('massmet')]['prior'] = MassMet(z_mini=-1.98, z_maxi=0.19, mass_mini=7, mass_maxi=12.5)
return sedmodel.SedModel(model_params)
示例5: load_model
# 需要导入模块: from astropy.cosmology import WMAP9 [as 别名]
# 或者: from astropy.cosmology.WMAP9 import age [as 别名]
def load_model(datname='', objname='', **extras):
###### REDSHIFT ######
hdulist = fits.open(datname)
idx = hdulist[1].data['Name'] == objname
zred = hdulist[1].data['cz'][idx][0] / 3e5
hdulist.close()
#### TUNIV #####
tuniv = WMAP9.age(zred).value
#### TAGE #####
tage_init = 1.1
tage_mini = 0.11 # FSPS standard
tage_maxi = tuniv
#### INSERT MAXIMUM AGE AND REDSHIFT INTO MODEL PARAMETER DICTIONARY ####
pnames = [m['name'] for m in model_params]
zind = pnames.index('zred')
model_params[zind]['init'] = zred
tind = pnames.index('tage')
model_params[tind]['prior_args']['maxi'] = tuniv
model = BurstyModel(model_params)
return model
示例6: load_model
# 需要导入模块: from astropy.cosmology import WMAP9 [as 别名]
# 或者: from astropy.cosmology.WMAP9 import age [as 别名]
def load_model(nbins_sfh=7,sigma=0.3,df=2.,agelims=None,objname=None, **extras):
# we'll need this to access specific model parameters
n = [p['name'] for p in model_params]
# replace nbins_sfh
nbins_sfh = 4 + (int(objname)-1) / 9
# create SFH bins
zred = model_params[n.index('zred')]['init']
tuniv = WMAP9.age(zred).value
# now construct the nonparametric SFH
# current scheme: six bins, four spaced equally in logarithmic
# last bin is 15% age of the Universe, first two are 0-30, 30-100
tbinmax = (tuniv*0.85)*1e9
agelims = agelims[:2] + np.linspace(agelims[2],np.log10(tbinmax),nbins_sfh-2).tolist() + [np.log10(tuniv*1e9)]
agebins = np.array([agelims[:-1], agelims[1:]])
# load nvariables and agebins
model_params[n.index('agebins')]['N'] = nbins_sfh
model_params[n.index('agebins')]['init'] = agebins.T
model_params[n.index('mass')]['N'] = nbins_sfh
model_params[n.index('logsfr_ratios')]['N'] = nbins_sfh-1
model_params[n.index('logsfr_ratios')]['init'] = np.full(nbins_sfh-1,0.0) # constant SFH
model_params[n.index('logsfr_ratios')]['prior'] = priors.StudentT(mean=np.full(nbins_sfh-1,0.0),
scale=np.full(nbins_sfh-1,sigma),
df=np.full(nbins_sfh-1,df))
return sedmodel.SedModel(model_params)
示例7: cosmoAge
# 需要导入模块: from astropy.cosmology import WMAP9 [as 别名]
# 或者: from astropy.cosmology.WMAP9 import age [as 别名]
def cosmoAge(redshift,
WMAP9=False,
H0=70.0,
Om0=0.30,
Planck15=False,
Myr=False):
"""
Get the Age of the Universe at redshift=z.
This is simply a wrapper of astropy.cosmology
The input redsfhit can be an array
"""
if WMAP9:
from astropy.cosmology import WMAP9 as cosmo
elif Planck15:
from astropy.cosmology import Planck15 as cosmo
else:
from astropy.cosmology import FlatLambdaCDM
cosmo = FlatLambdaCDM(H0=H0, Om0=Om0)
age = cosmo.age(redshift)
if not Myr:
return age.value
else:
return age.to(u.Myr).value
示例8: load_model
# 需要导入模块: from astropy.cosmology import WMAP9 [as 别名]
# 或者: from astropy.cosmology.WMAP9 import age [as 别名]
def load_model(nbins_sfh=5,sigma=0.3,df=2, **extras):
# we'll need this to access specific model parameters
n = [p['name'] for p in model_params]
# create SFH bins
zred = model_params[n.index('zred')]['init']
tuniv = WMAP9.age(zred).value*1e9
# now construct the nonparametric SFH
# set number of components
# set logsfr_ratio prior
# propagate to agebins
model_params[n.index('agebins')]['N'] = nbins_sfh
model_params[n.index('mass')]['N'] = nbins_sfh
model_params[n.index('logsfr_ratios')]['N'] = nbins_sfh-1
model_params[n.index('logsfr_ratios')]['init'] = np.full(nbins_sfh-1,0.0) # constant SFH
model_params[n.index('logsfr_ratios')]['prior'] = priors.StudentT(mean=np.full(nbins_sfh-1,0.0),
scale=np.full(nbins_sfh-1,sigma),
df=np.full(nbins_sfh-1,df))
model_params[n.index('logsfr_ratio30')]['prior'] = priors.StudentT(mean=0.0,
scale=sigma,
df=df)
model_params[n.index('logsfr_ratiomax')]['prior'] = priors.StudentT(mean=0.0,
scale=sigma,
df=df)
model_params.append({'name': 'tuniv', 'N': 1,
'isfree': False,
'init': tuniv})
return sedmodel.SedModel(model_params)
示例9: load_model
# 需要导入模块: from astropy.cosmology import WMAP9 [as 别名]
# 或者: from astropy.cosmology.WMAP9 import age [as 别名]
def load_model(objname=None, datdir=None, runname=None, agelims=[], zred=None, alpha_sfh=0.3, **extras):
# we'll need this to access specific model parameters
n = [p['name'] for p in model_params]
# first calculate redshift and corresponding t_universe
# if no redshift is specified, read from file
hdu = fits.open(APPS+'/prospector_alpha/data/3dhst/shivaei_sample.fits')
fields = np.array([f.replace('-','') for f in hdu[1].data['FIELD']])
ids = hdu[1].data['V4ID'].astype(str)
idx_obj = (fields == objname.split('_')[0]) & (ids == objname.split('_')[1])
zred = float(hdu[1].data['Z_MOSFIRE'][idx_obj][0])
tuniv = WMAP9.age(zred).value
# now construct the nonparametric SFH
# current scheme: six bins, four spaced equally in logarithmic
# last bin is 15% age of the Universe, first two are 0-30, 30-100
tbinmax = (tuniv*0.85)*1e9
agelims = agelims[:2] + np.linspace(agelims[2],np.log10(tbinmax),len(agelims)-3).tolist() + [np.log10(tuniv*1e9)]
agebins = np.array([agelims[:-1], agelims[1:]])
ncomp = len(agelims) - 1
# load into `agebins` in the model_params dictionary
model_params[n.index('agebins')]['N'] = ncomp
model_params[n.index('agebins')]['init'] = agebins.T
# now we do the computational z-fraction setup
# number of zfrac variables = (number of SFH bins - 1)
# set initial with a constant SFH
# if alpha_SFH is a vector, use this as the alpha array
# else assume all alphas are the same
model_params[n.index('mass')]['N'] = ncomp
model_params[n.index('z_fraction')]['N'] = ncomp-1
if type(alpha_sfh) != type(np.array([])):
alpha = np.repeat(alpha_sfh,ncomp-1)
else:
alpha = alpha_sfh
tilde_alpha = np.array([alpha[i-1:].sum() for i in xrange(1,ncomp)])
model_params[n.index('z_fraction')]['prior'] = priors.Beta(alpha=tilde_alpha, beta=alpha, mini=0.0, maxi=1.0)
model_params[n.index('z_fraction')]['init'] = np.array([(i-1)/float(i) for i in range(ncomp,1,-1)])
model_params[n.index('z_fraction')]['init_disp'] = 0.02
# set mass-metallicity prior
# insert redshift into model dictionary
model_params[n.index('massmet')]['prior'] = MassMet(z_mini=-1.98, z_maxi=0.19, mass_mini=7, mass_maxi=12.5)
model_params[n.index('zred')]['init'] = zred
# set gas-phase metallicity prior
# log(Z/Zsun) = -3.07 for model
mean = hdu[1].data['m_12LOGOH'][idx_obj][0]
if (mean > -100):
gas_logz_mean = np.clip((mean - 12) + 3.06, -2, 0.5)
sigma = (hdu[1].data['U68_12LOGOH'] - hdu[1].data['L68_12LOGOH'])[idx_obj][0] / 2.
model_params[n.index('gas_logz')]['prior'] = priors.ClippedNormal(mean=gas_logz_mean,sigma=sigma,mini=-2,maxi=0.5)
return sedmodel.SedModel(model_params)
示例10: load_model
# 需要导入模块: from astropy.cosmology import WMAP9 [as 别名]
# 或者: from astropy.cosmology.WMAP9 import age [as 别名]
def load_model(**extras):
# set tage_max, fix redshift
n = [p['name'] for p in model_params]
zred = 0.0001
tuniv = WMAP9.age(zred).value
model_params[n.index('tage')]['prior'].update(maxi=tuniv)
return sedmodel.SedModel(model_params)
示例11: load_model
# 需要导入模块: from astropy.cosmology import WMAP9 [as 别名]
# 或者: from astropy.cosmology.WMAP9 import age [as 别名]
def load_model(**extras):
# we'll need this to access specific model parameters
n = [p['name'] for p in model_params]
# set tmax = tuniv
zred = model_params[n.index('zred')]['init']
tuniv = WMAP9.age(zred).value
model_params[n.index('tage')]['prior'].update(maxi=tuniv)
return sedmodel.SedModel(model_params)
示例12: load_model
# 需要导入模块: from astropy.cosmology import WMAP9 [as 别名]
# 或者: from astropy.cosmology.WMAP9 import age [as 别名]
def load_model(objname=None, datdir=None, runname=None, agelims=[], **extras):
###### REDSHIFT ######
### open file, load data
# this is zgris
datname = datdir + objname.split('_')[0] + '_' + runname + '.dat'
dat = ascii.read(datname)
zred = dat['z_max_grism'][np.array(dat['phot_id']) == int(objname.split('_')[-1])][0]
#### CALCULATE TUNIV #####
tuniv = WMAP9.age(zred).value
#### NONPARAMETRIC SFH #####
# six bins, four spaced equally in logarithmic space AFTER t=100 Myr + BEFORE tuniv-1 Gyr
if tuniv > 5:
tbinmax = (tuniv-2)*1e9
else:
tbinmax = (tuniv-1)*1e9
agelims = [agelims[0]] + np.linspace(agelims[1],np.log10(tbinmax),5).tolist() + [np.log10(tuniv*1e9)]
agebins = np.array([agelims[:-1], agelims[1:]])
ncomp = len(agelims) - 1
#### ADJUST MODEL PARAMETERS #####
n = [p['name'] for p in model_params]
#### SET UP AGEBINS
model_params[n.index('agebins')]['N'] = ncomp
model_params[n.index('agebins')]['init'] = agebins.T
### computational z-fraction setup
# N-1 bins
# set initial by drawing randomly from the prior
model_params[n.index('mass')]['N'] = ncomp
model_params[n.index('z_fraction')]['N'] = ncomp-1
tilde_alpha = np.array([ncomp-i for i in xrange(1,ncomp)])
model_params[n.index('z_fraction')]['prior'] = priors.Beta(alpha=tilde_alpha, beta=np.ones_like(tilde_alpha),mini=0.0,maxi=1.0)
model_params[n.index('z_fraction')]['init'] = np.array([(i-1)/float(i) for i in range(ncomp,1,-1)])
model_params[n.index('z_fraction')]['init_disp'] = 0.02
### apply SDSS mass-metallicity prior
model_params[n.index('logzsol')]['prior'] = MassMet(mini=-1.98, maxi=0.19)
#### INSERT REDSHIFT INTO MODEL PARAMETER DICTIONARY ####
zind = n.index('zred')
model_params[zind]['init'] = zred
#### CREATE MODEL
model = SedMet(model_params)
return model
示例13: load_model
# 需要导入模块: from astropy.cosmology import WMAP9 [as 别名]
# 或者: from astropy.cosmology.WMAP9 import age [as 别名]
def load_model(objname=None, datdir=None, runname=None, agelims=[], zred=None, alpha_sfh=0.2, **extras):
# we'll need this to access specific model parameters
n = [p['name'] for p in model_params]
# first calculate redshift and corresponding t_universe
# if no redshift is specified, read from file
if zred is None:
datname = datdir + objname.split('_')[0] + '_' + runname + '.dat'
dat = ascii.read(datname)
idx = dat['phot_id'] == int(objname.split('_')[-1])
zred = float(dat['z_best'][idx])
tuniv = WMAP9.age(zred).value
# now construct the nonparametric SFH
# current scheme: six bins, four spaced equally in logarithmic
# last bin is 15% age of the Universe, first two are 0-30, 30-100
tbinmax = (tuniv*0.85)*1e9
agelims = agelims[:2] + np.linspace(agelims[2],np.log10(tbinmax),len(agelims)-3).tolist() + [np.log10(tuniv*1e9)]
agebins = np.array([agelims[:-1], agelims[1:]])
ncomp = len(agelims) - 1
# load into `agebins` in the model_params dictionary
model_params[n.index('agebins')]['N'] = ncomp
model_params[n.index('agebins')]['init'] = agebins.T
# now we do the computational z-fraction setup
# number of zfrac variables = (number of SFH bins - 1)
# set initial with a constant SFH
# if alpha_SFH is a vector, use this as the alpha array
# else assume all alphas are the same
model_params[n.index('mass')]['N'] = ncomp
model_params[n.index('z_fraction')]['N'] = ncomp-1
if type(alpha_sfh) != type(np.array([])):
alpha = np.repeat(alpha_sfh,ncomp-1)
else:
alpha = alpha_sfh
tilde_alpha = np.array([alpha[i-1:].sum() for i in xrange(1,ncomp)])
model_params[n.index('z_fraction')]['prior'] = priors.Beta(alpha=tilde_alpha, beta=alpha, mini=0.0, maxi=1.0)
model_params[n.index('z_fraction')]['init'] = np.array([(i-1)/float(i) for i in range(ncomp,1,-1)])
model_params[n.index('z_fraction')]['init_disp'] = 0.02
# set mass-metallicity prior
# insert redshift into model dictionary
model_params[n.index('massmet')]['prior'] = MassMet(z_mini=-1.98, z_maxi=0.19, mass_mini=7, mass_maxi=12.5)
model_params[n.index('zred')]['init'] = zred
return sedmodel.SedModel(model_params)
示例14: load_model
# 需要导入模块: from astropy.cosmology import WMAP9 [as 别名]
# 或者: from astropy.cosmology.WMAP9 import age [as 别名]
def load_model(objname='',datname='', agelims=[], **extras):
###### REDSHIFT ######
hdulist = fits.open(datname)
idx = hdulist[1].data['Name'] == objname
zred = hdulist[1].data['cz'][idx][0] / 3e5
lumdist = hdulist[1].data['Dist'][idx][0]
hdulist.close()
#### CALCULATE TUNIV #####
tuniv = WMAP9.age(zred).value
#### NONPARAMETRIC SFH ######
agelims[-1] = np.log10(tuniv*1e9)
agebins = np.array([agelims[:-1], agelims[1:]])
ncomp = len(agelims) - 1
#### ADJUST MODEL PARAMETERS #####
n = [p['name'] for p in model_params]
#### SET UP AGEBINS
model_params[n.index('agebins')]['N'] = ncomp
model_params[n.index('agebins')]['init'] = agebins.T
#### FRACTIONAL MASS INITIALIZATION
# N-1 bins, last is set by x = 1 - np.sum(sfr_fraction)
model_params[n.index('z_fraction')]['N'] = ncomp-1
tilde_alpha = np.array([ncomp-i for i in xrange(1,ncomp)])
model_params[n.index('z_fraction')]['prior'] = priors.Beta(alpha=tilde_alpha, beta=np.ones_like(tilde_alpha),mini=0.0,maxi=1.0)
model_params[n.index('z_fraction')]['init'] = model_params[n.index('z_fraction')]['prior'].sample()
model_params[n.index('z_fraction')]['init_disp'] = 0.02
model_params[n.index('sfr_fraction')]['N'] = ncomp-1
model_params[n.index('sfr_fraction')]['prior'] = priors.TopHat(maxi=np.full(ncomp-1,1.0), mini=np.full(ncomp-1,0.0))
model_params[n.index('sfr_fraction')]['init'] = np.zeros(ncomp-1)+1./ncomp
model_params[n.index('sfr_fraction')]['init_disp'] = 0.02
#### INSERT REDSHIFT INTO MODEL PARAMETER DICTIONARY ####
model_params[n.index('zred')]['init'] = zred
model_params[n.index('lumdist')]['init'] = lumdist
#### CREATE MODEL
model = BurstyModel(model_params)
return model
示例15: load_model
# 需要导入模块: from astropy.cosmology import WMAP9 [as 别名]
# 或者: from astropy.cosmology.WMAP9 import age [as 别名]
def load_model(objname='', datname='', agelims=[], **extras):
###### REDSHIFT ######
hdulist = fits.open(datname)
idx = hdulist[1].data['Name'] == objname
zred = hdulist[1].data['cz'][idx][0] / 3e5
hdulist.close()
#### CALCULATE TUNIV #####
tuniv = WMAP9.age(zred).value
#### NONPARAMETRIC SFH ######
agelims[-1] = np.log10(tuniv*1e9)
agebins = np.array([agelims[:-1], agelims[1:]])
ncomp = len(agelims) - 1
mass_init = expsfh(agelims, **extras)*1e5
#### ADJUST MODEL PARAMETERS #####
n = [p['name'] for p in model_params]
#### SET UP AGEBINS
model_params[n.index('agebins')]['N'] = ncomp
model_params[n.index('agebins')]['init'] = agebins.T
#### FRACTIONAL MASS
# N-1 bins, last is set by x = 1 - np.sum(sfr_fraction)
model_params[n.index('sfr_fraction')]['N'] = ncomp-1
model_params[n.index('sfr_fraction')]['init'] = mass_init[:-1] / np.sum(mass_init)
model_params[n.index('sfr_fraction')]['prior_args'] = {
'maxi':np.full(ncomp-1,1.0),
'mini':np.full(ncomp-1,0.0),
'alpha':1.0,
'alpha_sum':ncomp
# NOTE: ncomp instead of ncomp-1 makes the prior take into account the implicit Nth variable too
}
model_params[n.index('sfr_fraction')]['init_disp'] = 0.15
#### INSERT REDSHIFT INTO MODEL PARAMETER DICTIONARY ####
zind = n.index('zred')
model_params[zind]['init'] = zred
#### CREATE MODEL
model = BurstyModel(model_params)
return model