本文整理汇总了Python中ase.lattice.cubic.FaceCenteredCubic.get_atomic_numbers方法的典型用法代码示例。如果您正苦于以下问题:Python FaceCenteredCubic.get_atomic_numbers方法的具体用法?Python FaceCenteredCubic.get_atomic_numbers怎么用?Python FaceCenteredCubic.get_atomic_numbers使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类ase.lattice.cubic.FaceCenteredCubic
的用法示例。
在下文中一共展示了FaceCenteredCubic.get_atomic_numbers方法的5个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: MakeAtoms
# 需要导入模块: from ase.lattice.cubic import FaceCenteredCubic [as 别名]
# 或者: from ase.lattice.cubic.FaceCenteredCubic import get_atomic_numbers [as 别名]
def MakeAtoms(elem1, elem2=None):
if elem2 is None:
elem2 = elem1
a1 = reference_states[elem1]['a']
a2 = reference_states[elem2]['a']
a0 = (0.5 * a1**3 + 0.5 * a2**3)**(1.0/3.0) * 1.03
if ismaster:
# 50*50*50 would be big enough, but some vacancies are nice.
print "Z1 = %i, Z2 = %i, a0 = %.5f" % (elem1, elem2, a0)
atoms = FaceCenteredCubic(symbol='Cu', size=(51,51,51))
nremove = len(atoms) - 500000
assert nremove > 0
remove = np.random.choice(len(atoms), nremove, replace=False)
del atoms[remove]
if isparallel:
atoms = atoms.repeat(cpuLayout)
if elem1 != elem2:
z = atoms.get_atomic_numbers()
z[np.random.choice(len(atoms), len(atoms)/2, replace=False)] = elem2
atoms.set_atomic_numbers(z)
else:
atoms = None
if isparallel:
atoms = MakeParallelAtoms(atoms, cpuLayout)
MaxwellBoltzmannDistribution(atoms, T * units.kB)
return atoms
示例2: MakeAtoms
# 需要导入模块: from ase.lattice.cubic import FaceCenteredCubic [as 别名]
# 或者: from ase.lattice.cubic.FaceCenteredCubic import get_atomic_numbers [as 别名]
def MakeAtoms(elem1, elem2=None):
if elem2 is None:
elem2 = elem1
a1 = reference_states[elem1]['a']
a2 = reference_states[elem2]['a']
a0 = (0.5 * a1**3 + 0.5 * a2**3)**(1.0/3.0) * 1.03
if ismaster:
print "Z1 = %i, Z2 = %i, a0 = %.5f" % (elem1, elem2, a0)
# 50*50*50 would be big enough, but some vacancies are nice.
atoms = FaceCenteredCubic(symbol='Cu', size=(51,51,51))
nremove = len(atoms) - 500000
assert nremove > 0
remove = np.random.choice(len(atoms), nremove, replace=False)
del atoms[remove]
if elem1 != elem2:
z = atoms.get_atomic_numbers()
z[np.random.choice(len(atoms), len(atoms)/2, replace=False)] = elem2
atoms.set_atomic_numbers(z)
if isparallel:
# Move this contribution into position
uc = atoms.get_cell()
x = mpi.world.rank % cpuLayout[0]
y = (mpi.world.rank // cpuLayout[0]) % cpuLayout[1]
z = mpi.world.rank // (cpuLayout[0] * cpuLayout[1])
assert(0 <= x < cpuLayout[0])
assert(0 <= y < cpuLayout[1])
assert(0 <= z < cpuLayout[2])
offset = x * uc[0] + y * uc[1] + z * uc[2]
new_uc = cpuLayout[0] * uc[0] + cpuLayout[1] * uc[1] + cpuLayout[2] * uc[2]
atoms.set_cell(new_uc, scale_atoms=False)
atoms.set_positions(atoms.get_positions() + offset)
# Distribute atoms. Maybe they are all on the wrong cpu, but that will
# be taken care of.
atoms = MakeParallelAtoms(atoms, cpuLayout)
MaxwellBoltzmannDistribution(atoms, T * units.kB)
return atoms
示例3: hasattr
# 需要导入模块: from ase.lattice.cubic import FaceCenteredCubic [as 别名]
# 或者: from ase.lattice.cubic.FaceCenteredCubic import get_atomic_numbers [as 别名]
print " Periodic boundary conditions: %s" % (str(v),)
elif k == 'natoms':
print " Number of atoms: %i" % (v,)
elif hasattr(v, 'shape'):
print " %s: shape = %s, type = %s" % (k, str(v.shape), str(v.dtype))
else:
print " %s: %s" % (k, str(v))
# Read info from separate files.
for k, v in metadata['datatypes'].items():
if v and not k in small:
info = backend.read_info(frame, k)
if info and isinstance(info[0], tuple):
shape, dtype = info
else:
shape = info
dtype = 'unknown'
print " %s: shape = %s, type = %s" % (k, str(shape), dtype)
if __name__ == '__main__':
from ase.lattice.cubic import FaceCenteredCubic
from ase.io import read, write
atoms = FaceCenteredCubic(size=(5, 5, 5), symbol='Au')
write('test.bundle', atoms)
atoms2 = read('test.bundle')
assert (atoms.get_positions() == atoms2.get_positions()).all()
assert (atoms.get_atomic_numbers() == atoms2.get_atomic_numbers()).all()
示例4: __init__
# 需要导入模块: from ase.lattice.cubic import FaceCenteredCubic [as 别名]
# 或者: from ase.lattice.cubic.FaceCenteredCubic import get_atomic_numbers [as 别名]
def __init__(self, symbol=None, layers=None, positions=None,
latticeconstant=None, symmetry=None, cell=None,
center=None, multiplicity=1, filename=None, debug=0):
self.debug = debug
self.multiplicity = multiplicity
if filename is not None:
# We skip MonteCarloAtoms.__init__, do it manually.
self.mc_optim = np.zeros(101, np.intc)
self.mc_optim[0] = 10000 # MC optim invalid
self.read(filename)
return
#Find the atomic number
if symbol is not None:
if isinstance(symbol, str):
self.atomic_number = atomic_numbers[symbol]
else:
self.atomic_number = symbol
else:
raise Warning('You must specify a atomic symbol or number!')
#Find the crystal structure
if symmetry is not None:
if symmetry.lower() in ['bcc', 'fcc', 'hcp']:
self.symmetry = symmetry.lower()
else:
raise Warning('The %s symmetry does not exist!' % symmetry.lower())
else:
self.symmetry = reference_states[self.atomic_number]['symmetry'].lower()
if self.debug:
print 'Crystal structure:', self.symmetry
#Find the lattice constant
if latticeconstant is None:
if self.symmetry == 'fcc':
self.lattice_constant = reference_states[self.atomic_number]['a']
else:
raise Warning(('Cannot find the lattice constant ' +
'for a %s structure!' % self.symmetry))
else:
self.lattice_constant = latticeconstant
if self.debug:
print 'Lattice constant(s):', self.lattice_constant
#Make the cluster of atoms
if layers is not None and positions is None:
layers = list(layers)
#Make base crystal based on the found symmetry
if self.symmetry == 'fcc':
if len(layers) != data.lattice[self.symmetry]['surface_count']:
raise Warning('Something is wrong with the defined number of layers!')
xc = int(np.ceil(layers[1] / 2.0)) + 1
yc = int(np.ceil(layers[3] / 2.0)) + 1
zc = int(np.ceil(layers[5] / 2.0)) + 1
xs = xc + int(np.ceil(layers[0] / 2.0)) + 1
ys = yc + int(np.ceil(layers[2] / 2.0)) + 1
zs = zc + int(np.ceil(layers[4] / 2.0)) + 1
center = np.array((xc, yc, zc)) * self.lattice_constant
size = (xs, ys, zs)
if self.debug:
print 'Base crystal size:', size
print 'Center cell position:', center
atoms = FaceCenteredCubic(symbol=symbol,
size=size,
latticeconstant=self.lattice_constant,
align=False)
else:
raise Warning(('The %s crystal structure is not' +
' supported yet.') % self.symmetry)
positions = atoms.get_positions()
numbers = atoms.get_atomic_numbers()
cell = atoms.get_cell()
elif positions is not None:
numbers = [self.atomic_number] * len(positions)
else:
numbers = None
#Load the constructed atoms object into this object
self.set_center(center)
MonteCarloAtoms.__init__(self, numbers=numbers, positions=positions,
cell=cell, pbc=False)
#Construct the particle with the assigned surfasces
if layers is not None:
self.set_layers(layers)
示例5: FaceCenteredCubic
# 需要导入模块: from ase.lattice.cubic import FaceCenteredCubic [as 别名]
# 或者: from ase.lattice.cubic.FaceCenteredCubic import get_atomic_numbers [as 别名]
for latconst, maxrdf, nbins, withemt in testtypes:
atoms = FaceCenteredCubic(directions=[[1,0,0],[0,1,0],[0,0,1]],
symbol="Cu", size=(10,10,10),
latticeconstant=latconst, debug=0)
natoms = len(atoms)
ReportTest("Number of atoms", natoms, 4000, 0)
if withemt:
atoms.set_calculator(EMT())
print atoms.get_potential_energy()
result = _asap.RawRDF(atoms, maxrdf, nbins, zeros(len(atoms), int32), 1,
ListOfElements(atoms))
z = atoms.get_atomic_numbers()[0]
globalrdf, rdfdict, countdict = result
print globalrdf
ReportTest("Local and global RDF are identical",
min( globalrdf == rdfdict[0][(z,z)]), 1, 0)
ReportTest("Atoms are counted correctly", countdict[0][z], natoms, 0)
shellpop = [12, 6, 24, 12, 24, -1]
shell = [sqrt(i+1.0)/sqrt(2.0) for i in range(6)]
print shell
print shellpop
n = 0