本文整理汇总了Python中asdf.AsdfFile类的典型用法代码示例。如果您正苦于以下问题:Python AsdfFile类的具体用法?Python AsdfFile怎么用?Python AsdfFile使用的例子?那么恭喜您, 这里精选的类代码示例或许可以为您提供帮助。
在下文中一共展示了AsdfFile类的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: ifu_msa_to_oteip
def ifu_msa_to_oteip(reference_files):
"""
Transform from the MSA frame to the OTEIP frame.
Parameters
----------
reference_files: dict
Dictionary with reference files returned by CRDS.
Returns
-------
model : `~astropy.modeling.core.Model` model.
Transform from MSA to OTEIP.
"""
with AsdfFile.open(reference_files['fore']) as f:
fore = f.tree['model'].copy()
with AsdfFile.open(reference_files['ifufore']) as f:
ifufore = f.tree['model'].copy()
msa2fore_mapping = Mapping((0, 1, 2, 2))
msa2fore_mapping.inverse = Identity(3)
ifu_fore_transform = ifufore & Identity(1)
ifu_fore_transform.inverse = Mapping((0, 1, 2, 2)) | ifufore.inverse & Identity(1)
fore_transform = msa2fore_mapping | fore & Identity(1)
return msa2fore_mapping | ifu_fore_transform | fore_transform
示例2: _check_value
def _check_value(value, schema):
"""
Perform the actual validation.
"""
if value is None:
if schema.get('fits_required'):
name = schema.get("fits_keyword") or schema.get("fits_hdu")
raise jsonschema.ValidationError("%s is a required value"
% name)
else:
validator_context = AsdfFile()
validator_resolver = validator_context.resolver
temp_schema = {
'$schema':
'http://stsci.edu/schemas/asdf-schema/0.1.0/asdf-schema'}
temp_schema.update(schema)
validator = asdf_schema.get_validator(temp_schema,
validator_context,
validator_callbacks,
validator_resolver)
value = yamlutil.custom_tree_to_tagged_tree(value, validator_context)
validator.validate(value, _schema=temp_schema)
validator_context.close()
示例3: alpha_beta2XanYan
def alpha_beta2XanYan(input_model, reference_files):
"""
Create the transform from detector to Xan, Yan frame.
forward transform:
RegionsSelector
label_mapper is LabelMapperDict()
{channel_wave_range (): channel_number}
selector is {channel_number: ab2Xan & ab2Yan}
bacward_transform
RegionsSelector
label_mapper is LabelMapperDict()
{channel_wave_range (): channel_number}
selector is {channel_number: Xan2ab & Yan2ab}
"""
band = input_model.meta.instrument.band
channel = input_model.meta.instrument.channel
# used to read the wavelength range
channels = [c + band for c in channel]
f = AsdfFile.open(reference_files['v2v3'])
v23 = f.tree['model']
f.close()
f = AsdfFile.open(reference_files['wavelengthrange'])
# the following should go in the asdf reader
wave_range = f.tree['wavelengthrange'].copy()
wave_channels = f.tree['channels']
wr = {}
for ch, r in zip(wave_channels, wave_range):
wr[ch] = r
f.close()
dict_mapper = {}
sel = {}
for c in channels:
ch = int(c[0])
dict_mapper[tuple(wr[c])] = models.Mapping((2,), name="mapping_lam") | \
models.Const1D(ch, name="channel #")
map1 = models.Mapping((1, 0, 1, 0), name='map2poly')
map1._outputs = ('alpha', 'beta', 'alpha', 'beta')
map1._inputs = ('alpha', 'beta')
map1.inverse = models.Mapping((0, 1))
ident1 = models.Identity(1, name='identity_lam')
ident1._inputs = ('lam',)
chan_v23 = v23[c]
v23chan_backward = chan_v23.inverse
del chan_v23.inverse
v23_spatial = map1 | chan_v23
v23_spatial.inverse = map1 | v23chan_backward
v23c = v23_spatial & ident1
sel[ch] = v23c
wave_range_mapper = selector.LabelMapperRange(('alpha', 'beta', 'lam'), dict_mapper,
inputs_mapping=models.Mapping([2,]))
wave_range_mapper.inverse = wave_range_mapper.copy()
ab2xyan = selector.RegionsSelector(('alpha', 'beta', 'lam'), ('v2', 'v3', 'lam'),
label_mapper=wave_range_mapper,
selector=sel)
return ab2xyan
示例4: imaging_distortion
def imaging_distortion(input_model, reference_files):
"""
Create pixe2sky and sky2pixel transformation for the MIRI imager.
Parameters
----------
model : jwst_lib.models.ImagingModel
input model
reference_files : dict
reference files from CRDS
using CDP 3 Reference distortion file
MIRI_FM_MIRIMAGE_F1000W_PSF_03.01.00.fits
reference files/corrections needed (pixel to sky):
1. Filter dependent shift in (x,y) (!with an oposite sign to that delievred by the IT)
2. Apply MI
3. Apply Ai and BI matrices
4. Apply the TI matrix (this gives V2/V3 coordinates)
5. Apply V2/V3 to sky transformation
ref_file: filter_offset.asdf - (1)
ref_file: distortion.asdf -(2,3,4)
"""
distortion = AsdfFile.open(reference_files['distortion']).tree['model']
filter_offset = AsdfFile.open(reference_files['filteroffset']).tree[input_model.meta.instrument.filter]
full_distortion = models.Shift(filter_offset['row_offset']) & models.Shift(
filter_offset['column_offset']) | distortion
full_distortion = full_distortion.rename('distortion')
return full_distortion
示例5: saveto_asdf
def saveto_asdf(self, path, header=None, update_path=True):
"""
This function ...
:param path:
:param header:
:param update_path:
:return:
"""
# If a header is not specified, created it from the WCS
if header is None: header = self.header
# Import
from asdf import AsdfFile
# Create the tree
tree = dict()
tree["data"] = self._data
tree["header"] = header
# Create the asdf file
ff = AsdfFile(tree)
# Write
ff.write_to(path)
# Update the path
if update_path: self.path = path
示例6: test_backwards_compat_gcrs
def test_backwards_compat_gcrs():
obsgeoloc = (
3.0856775814671916e+16,
9.257032744401574e+16,
6.1713551629343834e+19
)
obsgeovel = (2.0, 1.0, 8.0)
old_frame_yaml = """
frames:
- !wcs/celestial_frame-1.0.0
axes_names: [lon, lat]
name: CelestialFrame
reference_frame:
type: GCRS
obsgeoloc:
- [%f, %f, %f]
- !unit/unit-1.0.0 m
obsgeovel:
- [%f, %f, %f]
- !unit/unit-1.0.0 m s-1
obstime: !time/time-1.0.0 2010-01-01 00:00:00.000
unit: [!unit/unit-1.0.0 deg, !unit/unit-1.0.0 deg]
""" % (obsgeovel + obsgeoloc)
new_frame_yaml = """
frames:
- !wcs/celestial_frame-1.1.0
axes_names: [lon, lat]
name: CelestialFrame
reference_frame:
type: GCRS
obsgeoloc:
- !unit/quantity-1.1.0 {unit: !unit/unit-1.0.0 m, value: %f}
- !unit/quantity-1.1.0 {unit: !unit/unit-1.0.0 m, value: %f}
- !unit/quantity-1.1.0 {unit: !unit/unit-1.0.0 m, value: %f}
obsgeovel:
- !unit/quantity-1.1.0 {unit: !unit/unit-1.0.0 m s-1, value: %f}
- !unit/quantity-1.1.0 {unit: !unit/unit-1.0.0 m s-1, value: %f}
- !unit/quantity-1.1.0 {unit: !unit/unit-1.0.0 m s-1, value: %f}
obstime: !time/time-1.1.0 2010-01-01 00:00:00.000
unit: [!unit/unit-1.0.0 deg, !unit/unit-1.0.0 deg]
""" % (obsgeovel + obsgeoloc)
old_buff = helpers.yaml_to_asdf(old_frame_yaml)
old_asdf = AsdfFile.open(old_buff)
old_frame = old_asdf.tree['frames'][0]
old_loc = old_frame.reference_frame.obsgeoloc
old_vel = old_frame.reference_frame.obsgeovel
new_buff = helpers.yaml_to_asdf(new_frame_yaml)
new_asdf = AsdfFile.open(new_buff)
new_frame = new_asdf.tree['frames'][0]
new_loc = new_frame.reference_frame.obsgeoloc
new_vel = new_frame.reference_frame.obsgeovel
assert (old_loc.x == new_loc.x and old_loc.y == new_loc.y and
old_loc.z == new_loc.z)
assert (old_vel.x == new_vel.x and old_vel.y == new_vel.y and
old_vel.z == new_vel.z)
示例7: ifupost2asdf
def ifupost2asdf(ifupost_files, outname):
"""
Create a reference file of type ``ifupost`` .
Combines all IDT ``IFU-POST`` reference files in one ASDF file.
forward direction : MSA to Collimator
backward_direction: Collimator to MSA
Parameters
----------
ifupost_files : list
Names of all ``IFU-POST`` IDT reference files
outname : str
Name of output ``ASDF`` file
"""
ref_kw = common_reference_file_keywords("IFUPOST", "NIRSPEC IFU-POST transforms - CDP4")
fa = AsdfFile()
fa.tree = ref_kw
for fifu in ifupost_files:
n = int((fifu.split('IFU-POST_')[1]).split('.pcf')[0])
fa.tree[n] = {}
with open(fifu) as f:
lines = [l.strip() for l in f.readlines()]
factors = lines[lines.index('*Factor 2') + 1].split()
rotation_angle = float(lines[lines.index('*Rotation') + 1])
input_rot_center = lines[lines.index('*InputRotationCentre 2') + 1].split()
output_rot_center = lines[lines.index('*OutputRotationCentre 2') + 1].split()
linear_sky2det = homothetic_sky2det(input_rot_center, rotation_angle, factors, output_rot_center)
degree = int(lines[lines.index('*FitOrder') + 1])
xcoeff_index = lines.index('*xForwardCoefficients 21 2')
xlines = lines[xcoeff_index + 1: xcoeff_index + 22]
xcoeff_forward = coeffs_from_pcf(degree, xlines)
x_poly_forward = models.Polynomial2D(degree, name='x_poly_forward', **xcoeff_forward)
ycoeff_index = lines.index('*yForwardCoefficients 21 2')
ycoeff_forward = coeffs_from_pcf(degree, lines[ycoeff_index + 1: ycoeff_index + 22])
y_poly_forward = models.Polynomial2D(degree, name='y_poly_forward', **ycoeff_forward)
xcoeff_index = lines.index('*xBackwardCoefficients 21 2')
xcoeff_backward = coeffs_from_pcf(degree, lines[xcoeff_index + 1: xcoeff_index + 22])
x_poly_backward = models.Polynomial2D(degree, name='x_poly_backward', **xcoeff_backward)
ycoeff_index = lines.index('*yBackwardCoefficients 21 2')
ycoeff_backward = coeffs_from_pcf(degree, lines[ycoeff_index + 1: ycoeff_index + 22])
y_poly_backward = models.Polynomial2D(degree, name='y_poly_backward', **ycoeff_backward)
output2poly_mapping = Identity(2, name='output_mapping')
output2poly_mapping.inverse = Mapping([0, 1, 0, 1])
input2poly_mapping = Mapping([0, 1, 0, 1], name='input_mapping')
input2poly_mapping.inverse = Identity(2)
model_poly = input2poly_mapping | (x_poly_forward & y_poly_forward) | output2poly_mapping
model = linear_sky2det | model_poly
fa.tree[n]['model'] = model
asdffile = fa.write_to(outname)
return asdffile
示例8: detector_to_gwa
def detector_to_gwa(reference_files, detector, disperser):
"""
Transform from DETECTOR frame to GWA frame.
Parameters
----------
reference_files: dict
Dictionary with reference files returned by CRDS.
detector : str
The detector keyword.
disperser : dict
A corrected disperser ASDF object.
Returns
-------
model : `~astropy.modeling.core.Model` model.
Transform from DETECTOR frame to GWA frame.
"""
with AsdfFile.open(reference_files['fpa']) as f:
fpa = f.tree[detector].copy()
with AsdfFile.open(reference_files['camera']) as f:
camera = f.tree['model'].copy()
angles = [disperser['theta_x'], disperser['theta_y'],
disperser['theta_z'], disperser['tilt_y']]
rotation = Rotation3DToGWA(angles, axes_order="xyzy", name='rotaton')
u2dircos = Unitless2DirCos(name='unitless2directional_cosines')
model = (models.Shift(-1) & models.Shift(-1) | fpa | camera | u2dircos | rotation)
return model
示例9: ifu_slicer2asdf
def ifu_slicer2asdf(ifuslicer, outname):
"""
Create an asdf reference file with the MSA description.
ifu_slicer2asdf("IFU_slicer.sgd", "ifu_slicer.asdf")
Parameters
----------
ifuslicer : str
A fits file with the IFU slicer description
outname : str
Name of output ASDF file.
"""
ref_kw = common_reference_file_keywords("IFUSLICER", "NIRSPEC IFU SLICER description - CDP4")
f = fits.open(ifuslicer)
tree = ref_kw.copy()
data = f[1].data
header = f[1].header
shiftx = models.Shift(header['XREF'], name='ifu_slicer_xref')
shifty = models.Shift(header['YREF'], name='ifu_slicer_yref')
rot = models.Rotation2D(header['ROT'], name='ifu_slicer_rot')
model = rot | shiftx & shifty
tree['model'] = model
tree['data'] = f[1].data
f.close()
fasdf = AsdfFile()
fasdf.tree = tree
fasdf.write_to(outname)
return fasdf
示例10: prism2asdf
def prism2asdf(prifile, tiltyfile, tiltxfile, outname):
"""Create a NIRSPEC prism disperser reference file in ASDF format.
Combine information stored in disperser_G?.dis and disperser_G?_TiltY.gtp
files delievred by the IDT.
Parameters
----------
prifile : list or str
File with primary information for the PRSIM
tiltyfile : str
File with tilt_Y data, e.g. disperser_PRISM_TiltY.gtp.
tiltxfile: str
File with tilt_x data, e.g. disperser_PRISM_TiltX.gtp.
outname : str
Name of output ASDF file.
Returns
-------
fasdf : asdf.AsdfFile
"""
params = common_reference_file_keywords("PRISM", "NIRSPEC PRISM Model")
flist = [prifile, tiltyfile, tiltxfile]
# translate the files
for fname in flist:
try:
refparams = dict_from_file(fname)
except:
print("Disperser file was not converted.")
raise
pdict = {}
coeffs = {}
parts = fname.lower().split(".")[0]
ref = str("_".join(parts.split("_")[1:]))
if "pri" not in fname:
try:
for i, c in enumerate(refparams['CoeffsTemperature00']):
coeffs['c' + str(i)] = c
pdict['tilt_model'] = models.Polynomial1D(len(coeffs)-1, **coeffs)
del refparams['CoeffsTemperature00']
except KeyError:
print("Missing CoeffsTemperature in {0}".format(fname))
raise
# store the rest of the keys
for k, v in refparams.items():
pdict[k] = v
print(pdict)
params[ref] = pdict
fasdf = AsdfFile()
fasdf.tree = params
fasdf.write_to(outname)
return fasdf
示例11: ifuslit_to_msa
def ifuslit_to_msa(slits, reference_files):
"""
The transform from slit_frame to msa_frame.
Parameters
----------
slits_id : list
A list of slit IDs for all open shutters/slitlets.
msafile : str
The name of the msa reference file.
Returns
-------
model : `~jwst_lib.pipeline_models.Slit2Msa` model.
Transform from slit_frame to msa_frame.
"""
with AsdfFile.open(reference_files['ifufore']) as f:
ifufore = f.tree['model']
ifuslicer = AsdfFile.open(reference_files['ifuslicer'])
models = {}
ifuslicer_model = (ifuslicer.tree['model']).rename('ifuslicer_model')
for slit in slits:
slitdata = ifuslicer.tree['data'][slit]
slitdata_model = (get_slit_location_model(slitdata)).rename('slitdata_model')
msa_transform = slitdata_model | ifuslicer_model
models[slit] = msa_transform
ifuslicer.close()
return Slit2Msa(models)
示例12: calc_cube
def calc_cube(numb, fried_parameter = 4, time_between = 0.7):
filepath = os.getcwd().split("vApp_reduction",1)[0]+"vApp_reduction/data/psf_cube_cache/"
filepath += "psf_cube_"+str(float(fried_parameter))+"_"+str(float(time_between))+"_"+str(int(numb))+".asdf"
#expand to only demand numb =< numb on disk
if os.path.exists(filepath):
tree = AsdfFile.open(filepath, copy_arrays=True).tree
tree_keys = tree.keys()
psf_params = sorted(list(filter(lambda key: isinstance(key, float), tree_keys)))
psf_cube = list(map(lambda param: np.copy(tree[param]), psf_params))
return psf_cube, psf_params
else:
path = os.getcwd()+"/code/psf/generate_vAPP_cube.py"
params = [str(fried_parameter), str(time_between), str(numb)]
cmd = [sys.executable, path, *params]
print("please run: ")
print(' '.join(cmd))
input("Press Enter to continue...")
tree = AsdfFile.open(filepath).tree
tree_keys = tree.keys()
psf_params = sorted(list(filter(lambda key: isinstance(key, float), tree_keys)))
psf_cube = list(map(lambda param: tree[param], psf_params))
return psf_cube, psf_params
示例13: pcf_forward
def pcf_forward(pcffile, outname):
"""
Create the **IDT** forward transform from collimator to gwa.
"""
with open(pcffile) as f:
lines = [l.strip() for l in f.readlines()]
factors = lines[lines.index('*Factor 2') + 1].split()
# factor==1/factor in backward msa2ote direction and factor==factor in sky2detector direction
scale = models.Scale(float(factors[0]), name="x_scale") & \
models.Scale(float(factors[1]), name="y_scale")
rotation_angle = lines[lines.index('*Rotation') + 1]
# The minius sign here is because astropy.modeling has the opposite direction of rotation than the idl implementation
rotation = models.Rotation2D(-float(rotation_angle), name='rotation')
# Here the model is called "output_shift" but in the team version it is the "input_shift".
input_rot_center = lines[lines.index('*InputRotationCentre 2') + 1].split()
input_rot_shift = models.Shift(-float(input_rot_center[0]), name='input_x_shift') & \
models.Shift(-float(input_rot_center[1]), name='input_y_shift')
# Here the model is called "input_shift" but in the team version it is the "output_shift".
output_rot_center = lines[lines.index('*OutputRotationCentre 2') + 1].split()
output_rot_shift = models.Shift(float(output_rot_center[0]), name='output_x_shift') & \
models.Shift(float(output_rot_center[1]), name='output_y_shift')
degree = int(lines[lines.index('*FitOrder') + 1])
xcoeff_index = lines.index('*xForwardCoefficients 21 2')
xlines = lines[xcoeff_index + 1: xcoeff_index + 22]
xcoeff_forward = coeffs_from_pcf(degree, xlines)
x_poly_forward = models.Polynomial2D(degree, name='x_poly_forward', **xcoeff_forward)
ycoeff_index = lines.index('*yForwardCoefficients 21 2')
ycoeff_forward = coeffs_from_pcf(degree, lines[ycoeff_index + 1: ycoeff_index + 22])
y_poly_forward = models.Polynomial2D(degree, name='y_poly_forward', **ycoeff_forward)
xcoeff_index = lines.index('*xBackwardCoefficients 21 2')
xcoeff_backward = coeffs_from_pcf(degree, lines[xcoeff_index + 1: xcoeff_index + 22])
x_poly_backward = models.Polynomial2D(degree, name='x_poly_backward', **xcoeff_backward)
ycoeff_index = lines.index('*yBackwardCoefficients 21 2')
ycoeff_backward = coeffs_from_pcf(degree, lines[ycoeff_index + 1: ycoeff_index + 22])
y_poly_backward = models.Polynomial2D(degree, name='y_poly_backward', **ycoeff_backward)
x_poly_forward.inverse = x_poly_backward
y_poly_forward.inverse = y_poly_backward
poly_mapping1 = Mapping((0, 1, 0, 1))
poly_mapping1.inverse = Identity(2)
poly_mapping2 = Identity(2)
poly_mapping2.inverse = Mapping((0, 1, 0, 1))
model = input_rot_shift | rotation | scale | output_rot_shift | \
poly_mapping1 | x_poly_forward & y_poly_forward | poly_mapping2
f = AsdfFile()
f.tree = {'model': model}
f.write_to(outname)
示例14: ote2asdf
def ote2asdf(otepcf, outname, ref_kw):
"""
ref_kw = common_reference_file_keywords('OTE', 'NIRSPEC OTE transform - CDP4')
ote2asdf('Model/Ref_Files/CoordTransform/OTE.pcf', 'jwst_nirspec_ote_0001.asdf', ref_kw)
"""
with open(otepcf) as f:
lines = [l.strip() for l in f.readlines()]
factors = lines[lines.index('*Factor 2 1') + 1].split()
# this corresponds to modeling Rotation direction as is
rotation_angle = float(lines[lines.index('*Rotation') + 1])
input_rot_center = lines[lines.index('*InputRotationCentre 2 1') + 1].split()
output_rot_center = lines[lines.index('*OutputRotationCentre 2 1') + 1].split()
mlinear = homothetic_det2sky(input_rot_center, rotation_angle, factors, output_rot_center)
degree = int(lines[lines.index('*FitOrder') + 1])
xcoeff_index = lines.index('*xBackwardCoefficients 21 2')
xlines = lines[xcoeff_index + 1].split('\t')
xcoeff_backward = coeffs_from_pcf(degree, xlines)
x_poly_forward = models.Polynomial2D(degree, name='x_poly_forward', **xcoeff_backward)
xcoeff_index = lines.index('*xForwardCoefficients 21 2')
xlines = lines[xcoeff_index + 1].split('\t')
xcoeff_forward = coeffs_from_pcf(degree, xlines)
x_poly_backward = models.Polynomial2D(degree, name='x_poly_backward', **xcoeff_forward)
ycoeff_index = lines.index('*yBackwardCoefficients 21 2')
ylines = lines[ycoeff_index + 1].split('\t')
ycoeff_backward = coeffs_from_pcf(degree, ylines)
y_poly_forward = models.Polynomial2D(degree, name='y_poly_forward', **ycoeff_backward)
ycoeff_index = lines.index('*yForwardCoefficients 21 2')
ylines = lines[ycoeff_index + 1].split('\t')
ycoeff_forward = coeffs_from_pcf(degree, ylines)
y_poly_backward = models.Polynomial2D(degree, name='y_poly_backward', **ycoeff_forward)
x_poly_forward.inverse = x_poly_backward
y_poly_forward.inverse = y_poly_backward
output2poly_mapping = Identity(2, name='output_mapping')
output2poly_mapping.inverse = Mapping([0, 1, 0, 1])
input2poly_mapping = Mapping([0, 1, 0, 1], name='input_mapping')
input2poly_mapping.inverse = Identity(2)
model_poly = input2poly_mapping | (x_poly_forward & y_poly_forward) | output2poly_mapping
model = model_poly | mlinear
f = AsdfFile()
f.tree = ref_kw.copy()
f.tree['model'] = model
f.write_to(outname)
return model_poly, mlinear
示例15: create_v23
def create_v23(reftype, detector, band, channels, data, name):
"""
Create the transform from MIRI Local to telescope V2/V3 system for all channels.
"""
channel = "".join([ch[0] for ch in channels])
tree = {"detector": detector,
"instrument" : "MIRI",
"band": band,
"channel": channel,
"exp_type": "MIR_MRS",
"pedigree": "GROUND",
"title": "MIRI IFU model - based on CDP-4",
"reftype": reftype,
"author": "N. Dencheva"
}
ab_v23 = data[0]
v23_ab = data[1]
m = {}
c0_0, c0_1, c1_0, c1_1 = ab_v23[0][1:]
ch1_v2 = models.Polynomial2D(2, c0_0=c0_0, c1_0=c1_0, c0_1=c0_1, c1_1=c1_1,
name="ab_v23")
c0_0, c0_1, c1_0, c1_1 = v23_ab[0][1:]
ch1_a = models.Polynomial2D(2, c0_0=c0_0, c1_0=c1_0, c0_1=c0_1, c1_1=c1_1,
name="v23_ab")
c0_0, c0_1, c1_0, c1_1 = ab_v23[1][1:]
ch1_v3 = models.Polynomial2D(2, c0_0=c0_0, c1_0=c1_0, c0_1=c0_1, c1_1=c1_1,
name="ab_v23")
c0_0, c0_1, c1_0, c1_1 = v23_ab[1][1:]
ch1_b = models.Polynomial2D(2, c0_0=c0_0, c1_0=c1_0, c0_1=c0_1, c1_1=c1_1,
name="v23_ab")
c0_0, c0_1, c1_0, c1_1 = ab_v23[2][1:]
ch2_v2 = models.Polynomial2D(2, c0_0=c0_0, c1_0=c1_0, c0_1=c0_1, c1_1=c1_1,
name="ab_v23")
c0_0, c0_1, c1_0, c1_1 = v23_ab[2][1:]
ch2_a = models.Polynomial2D(2, c0_0=c0_0, c1_0=c1_0, c0_1=c0_1, c1_1=c1_1,
name="v23_ab")
c0_0, c0_1, c1_0, c1_1 = ab_v23[3][1:]
ch2_v3 = models.Polynomial2D(2, c0_0=c0_0, c1_0=c1_0, c0_1=c0_1, c1_1=c1_1,
name="ab_v23")
c0_0, c0_1, c1_0, c1_1 = v23_ab[3][1:]
ch2_b = models.Polynomial2D(2, c0_0=c0_0, c1_0=c1_0, c0_1=c0_1, c1_1=c1_1,
name="v23_ab")
ch1_for = ch1_v2 & ch1_v3
ch2_for = ch2_v2 & ch2_v3
ch1_for.inverse = ch1_a & ch1_b
ch2_for.inverse = ch2_a & ch2_b
m[channels[0]] = ch1_for
m[channels[1]] = ch2_for
tree['model'] = m
f = AsdfFile()
f.tree = tree
f.write_to(name)