本文整理汇总了Python中apgl.util.PathDefaults.PathDefaults.getOutputDir方法的典型用法代码示例。如果您正苦于以下问题:Python PathDefaults.getOutputDir方法的具体用法?Python PathDefaults.getOutputDir怎么用?Python PathDefaults.getOutputDir使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类apgl.util.PathDefaults.PathDefaults
的用法示例。
在下文中一共展示了PathDefaults.getOutputDir方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: saveRatingMatrix
# 需要导入模块: from apgl.util.PathDefaults import PathDefaults [as 别名]
# 或者: from apgl.util.PathDefaults.PathDefaults import getOutputDir [as 别名]
def saveRatingMatrix():
"""
Take the coauthor graph above and make vertices indexed from 0 then save
as matrix market format.
"""
edgeFileName = PathDefaults.getOutputDir() + "erasm/edges2.txt"
logging.debug("Reading edge list")
edges = numpy.loadtxt(edgeFileName, delimiter=",", dtype=numpy.int)
logging.debug("Total number of edges: " + str(edges.shape[0]))
vertexIdDict = {}
vertexIdSet = set([])
i = 0
for edge in edges:
if edge[0] not in vertexIdSet:
vertexIdDict[edge[0]] = i
vertexIdSet.add(edge[0])
i += 1
if edge[1] not in vertexIdSet:
vertexIdDict[edge[1]] = i
vertexIdSet.add(edge[1])
i += 1
n = len(vertexIdDict)
R = scipy.sparse.lil_matrix((n, n))
logging.debug("Creating sparse matrix")
for edge in edges:
R[vertexIdDict[edge[0]], vertexIdDict[edge[1]]] += 1
R[vertexIdDict[edge[1]], vertexIdDict[edge[0]]] += 1
logging.debug("Created matrix " + str(R.shape) + " with " + str(R.getnnz()) + " non zeros")
R = R.tocsr()
minCoauthors = 20
logging.debug("Removing vertices with <" + str(minCoauthors) + " coauthors")
nonzeros = R.nonzero()
inds = numpy.arange(nonzeros[0].shape[0])[numpy.bincount(nonzeros[0]) >= minCoauthors]
R = R[inds, :][:, inds]
logging.debug("Matrix has shape " + str(R.shape) + " with " + str(R.getnnz()) + " non zeros")
matrixFileName = PathDefaults.getOutputDir() + "erasm/R"
scipy.io.mmwrite(matrixFileName, R)
logging.debug("Wrote matrix to file " + matrixFileName)
示例2: __init__
# 需要导入模块: from apgl.util.PathDefaults import PathDefaults [as 别名]
# 或者: from apgl.util.PathDefaults.PathDefaults import getOutputDir [as 别名]
def __init__(self, YList, X, featuresName, ages, args):
super(MetabolomicsExpRunner, self).__init__(args=args)
self.X = X
self.YList = YList #The list of concentrations
self.featuresName = featuresName
self.args = args
self.ages = ages
self.maxDepth = 10
self.numTrees = 10
self.sampleSize = 1.0
self.sampleReplace = True
self.folds = 5
self.resultsDir = PathDefaults.getOutputDir() + "metabolomics/"
self.leafRankGenerators = []
self.leafRankGenerators.append((LinearSvmGS.generate(), "SVM"))
self.leafRankGenerators.append((SvcGS.generate(), "RBF-SVM"))
self.leafRankGenerators.append((DecisionTree.generate(), "CART"))
self.pcaLeafRankGenerators = [(LinearSvmPca.generate(), "LinearSVM-PCA")]
self.funcLeafRankGenerators = []
self.funcLeafRankGenerators.append((LinearSvmFGs.generate, "SVMF"))
self.funcLeafRankGenerators.append((SvcFGs.generate, "RBF-SVMF"))
self.funcLeafRankGenerators.append((DecisionTreeF.generate, "CARTF"))
#Store all the label vectors and their missing values
YIgf1Inds, YICortisolInds, YTestoInds = MetabolomicsUtils.createIndicatorLabels(YList)
self.hormoneInds = [YIgf1Inds, YICortisolInds, YTestoInds]
self.hormoneNames = MetabolomicsUtils.getLabelNames()
示例3: __init__
# 需要导入模块: from apgl.util.PathDefaults import PathDefaults [as 别名]
# 或者: from apgl.util.PathDefaults.PathDefaults import getOutputDir [as 别名]
def __init__(self, maxIter=None, iterStartTimeStamp=None):
"""
Return a training and test set for movielens based on the time each
rating was made.
"""
self.timeStep = timedelta(30).total_seconds()
# iterStartDate is the starting date of the iterator
if iterStartTimeStamp != None:
self.iterStartTimeStamp = iterStartTimeStamp
else:
self.iterStartTimeStamp = 789652009
outputDir = PathDefaults.getOutputDir() + "recommend/erasm/"
self.numRatings = 402872
self.minContacts = 10
if not os.path.exists(outputDir):
os.mkdir(outputDir)
self.ratingFileName = outputDir + "data.npz"
self.userDictFileName = outputDir + "userIdDict.pkl"
self.isTrainRatingsFileName = outputDir + "is_train.npz"
self.maxIter = maxIter
self.trainSplit = 4.0 / 5
self.processRatings()
self.splitDataset()
self.loadProcessedData()
if self.maxIter != None:
logging.debug("Maximum number of iterations: " + str(self.maxIter))
示例4: testWriteToFile3
# 需要导入模块: from apgl.util.PathDefaults import PathDefaults [as 别名]
# 或者: from apgl.util.PathDefaults.PathDefaults import getOutputDir [as 别名]
def testWriteToFile3(self):
"""
We will test out writing out some random graphs to Pajek
"""
numVertices = 20
numFeatures = 0
vList = VertexList(numVertices, numFeatures)
graph = SparseGraph(vList)
p = 0.1
generator = ErdosRenyiGenerator(p)
graph = generator.generate(graph)
pw = PajekWriter()
directory = PathDefaults.getOutputDir() + "test/"
pw.writeToFile(directory + "erdosRenyi20", graph)
#Now write a small world graph
p = 0.2
k = 3
graph.removeAllEdges()
generator = SmallWorldGenerator(p, k)
graph = generator.generate(graph)
pw.writeToFile(directory + "smallWorld20", graph)
示例5: __init__
# 需要导入模块: from apgl.util.PathDefaults import PathDefaults [as 别名]
# 或者: from apgl.util.PathDefaults.PathDefaults import getOutputDir [as 别名]
def __init__(self, maxIter=None, iterStartTimeStamp=None):
outputDir = PathDefaults.getOutputDir() + "recommend/erasm/"
if not os.path.exists(outputDir):
os.mkdir(outputDir)
#iterStartDate is the starting date of the iterator
if iterStartTimeStamp != None:
self.iterStartTimeStamp = iterStartTimeStamp
else:
self.iterStartTimeStamp = 1286229600
self.timeStep = timedelta(30).total_seconds()
self.ratingFileName = outputDir + "data.npz"
self.userDictFileName = outputDir + "userIdDict.pkl"
self.groupDictFileName = outputDir + "groupIdDict.pkl"
self.isTrainRatingsFileName = outputDir + "is_train.npz"
self.dataDir = PathDefaults.getDataDir() + "erasm/"
self.dataFileName = self.dataDir + "groupMembers-29-11-12"
self.maxIter = maxIter
self.trainSplit = 4.0/5
self.processRatings()
self.splitDataset()
self.loadProcessedData()
示例6: __init__
# 需要导入模块: from apgl.util.PathDefaults import PathDefaults [as 别名]
# 或者: from apgl.util.PathDefaults.PathDefaults import getOutputDir [as 别名]
def __init__(self, trainXIteratorFunc, testXIteratorFunc, cmdLine=None, defaultAlgoArgs = None, dirName=""):
""" priority for default args
- best priority: command-line value
- middle priority: set-by-function value
- lower priority: class value
"""
# Parameters to choose which methods to run
# Obtained merging default parameters from the class with those from the user
self.algoArgs = RecommendExpHelper.newAlgoParams(defaultAlgoArgs)
#Function to return iterators to the training and test matrices
self.trainXIteratorFunc = trainXIteratorFunc
self.testXIteratorFunc = testXIteratorFunc
#How often to print output
self.logStep = 10
#The max number of observations to use for model selection
self.sampleSize = 5*10**6
# basic resultsDir
self.resultsDir = PathDefaults.getOutputDir() + "recommend/" + dirName + "/"
# update algoParams from command line
self.readAlgoParams(cmdLine)
示例7: getOutputFileName
# 需要导入模块: from apgl.util.PathDefaults import PathDefaults [as 别名]
# 或者: from apgl.util.PathDefaults.PathDefaults import getOutputDir [as 别名]
def getOutputFileName(graphType, p, k, infoProb):
outputDirectory = PathDefaults.getOutputDir()
if graphType == "SmallWorld":
outputFileName = outputDirectory + "SvmEgoOutput_type=" + graphType + "_p=" + str(p) + "_k=" + str(k) + "_q=" + str(infoProb)
elif graphType == "ErdosRenyi":
outputFileName = outputDirectory + "SvmEgoOutput_type=" + graphType + "_p=" + str(p) + "_q=" + str(infoProb)
else:
raise ValueError("Invalid graph type: " + graphType)
return outputFileName
示例8: __init__
# 需要导入模块: from apgl.util.PathDefaults import PathDefaults [as 别名]
# 或者: from apgl.util.PathDefaults.PathDefaults import getOutputDir [as 别名]
def __init__(self, df, X, featuresName, ages, args):
super(MetabolomicsRegExpRunner, self).__init__(args=args)
self.df = df
self.X = X
self.featuresName = featuresName
self.args = args
self.ages = ages
self.labelNames = MetabolomicsUtils.getLabelNames()
self.YList = MetabolomicsUtils.createLabelList(df, self.labelNames)
self.boundsList = MetabolomicsUtils.getBounds()
self.resultsDir = PathDefaults.getOutputDir() + "metabolomics/"
示例9: loadParams
# 需要导入模块: from apgl.util.PathDefaults import PathDefaults [as 别名]
# 或者: from apgl.util.PathDefaults.PathDefaults import getOutputDir [as 别名]
def loadParams(ind):
if processReal:
resultsDir = PathDefaults.getOutputDir() + "viroscopy/real/theta" + str(ind) + "/"
outputDir = resultsDir + "stats/"
N, matchAlpha, breakScale, numEpsilons, epsilon, minEpsilon, matchAlg, abcMaxRuns, batchSize, pertScale = HIVModelUtils.realABCParams(True)
startDate, endDate, recordStep, M, targetGraph, numInds = HIVModelUtils.realSimulationParams(test=True, ind=ind)
realTheta, sigmaTheta, pertTheta = HIVModelUtils.estimatedRealTheta(ind)
numInds=2
prefix = "Real"
else:
resultsDir = PathDefaults.getOutputDir() + "viroscopy/toy/theta/"
outputDir = resultsDir + "stats/"
N, matchAlpha, breakScale, numEpsilons, epsilon, minEpsilon, matchAlg, abcMaxRuns, batchSize, pertScale = HIVModelUtils.toyABCParams()
startDate, endDate, recordStep, M, targetGraph = HIVModelUtils.toySimulationParams(test=True)
realTheta, sigmaTheta, pertTheta = HIVModelUtils.toyTheta()
prefix = "Toy"
numInds = 1
breakSize = (targetGraph.subgraph(targetGraph.removedIndsAt(endDate)).size - targetGraph.subgraph(targetGraph.removedIndsAt(startDate)).size) * breakScale
return N, resultsDir, outputDir, recordStep, startDate, endDate, prefix, targetGraph, breakSize, numEpsilons, M, matchAlpha, matchAlg, numInds
示例10: __init__
# 需要导入模块: from apgl.util.PathDefaults import PathDefaults [as 别名]
# 或者: from apgl.util.PathDefaults.PathDefaults import getOutputDir [as 别名]
def __init__(self, iteratorFunc, cmdLine=None, defaultAlgoArgs = None, dirName=""):
# Parameters to choose which methods to run
# Obtained merging default parameters from the class with those from the user
self.algoArgs = ClusterExpHelper.newAlgoParams(defaultAlgoArgs)
# Variables related to the dataset
self.getIteratorFunc = iteratorFunc
#How often to print output
self.logStep = 10
# basic resultsDir
self.resultsDir = PathDefaults.getOutputDir() + "cluster/" + dirName + "/"
# update algoParams from command line
self.readAlgoParams(cmdLine)
示例11: testWriteToFile
# 需要导入模块: from apgl.util.PathDefaults import PathDefaults [as 别名]
# 或者: from apgl.util.PathDefaults.PathDefaults import getOutputDir [as 别名]
def testWriteToFile(self):
graph = DictGraph()
numVertices = 5
numFeatures = 3
V = numpy.random.rand(numVertices, numFeatures)
for i in range(0, numVertices):
graph.setVertex(i, V[i, :])
fileName = PathDefaults.getOutputDir() + "test/vertices"
verterWriter = CsvVertexWriter()
verterWriter.writeToFile(fileName, graph)
logging.debug(V)
示例12: __init__
# 需要导入模块: from apgl.util.PathDefaults import PathDefaults [as 别名]
# 或者: from apgl.util.PathDefaults.PathDefaults import getOutputDir [as 别名]
def __init__(self, maxIter=None, iterStartTimeStamp=None):
"""
Return a training and test set for netflix based on the time each
rating was made. There are 62 iterations.
"""
self.timeStep = timedelta(30).total_seconds()
#startDate is used to convert dates into ints
#self.startDate = datetime(1998,1,1)
#self.endDate = datetime(2005,12,31)
#iterStartDate is the starting date of the iterator
if iterStartTimeStamp != None:
self.iterStartTimeStamp = iterStartTimeStamp
else:
self.iterStartTimeStamp = time.mktime(datetime(2001,1,1).timetuple())
self.startMovieID = 1
self.endMovieID = 17770
self.numMovies = 17770
self.numRatings = 100480507
self.numProbeMovies = 16938
self.numProbeRatings = 1408395
self.numCustomers = 480189
outputDir = PathDefaults.getOutputDir() + "recommend/netflix/"
if not os.path.exists(outputDir):
os.mkdir(outputDir)
self.ratingFileName = outputDir + "data.npz"
self.custDictFileName = outputDir + "custIdDict.pkl"
self.probeFileName = PathDefaults.getDataDir() + "netflix/probe.txt"
self.testRatingsFileName = outputDir + "test_data.npz"
self.isTrainRatingsFileName = outputDir + "is_train.npz"
self.maxIter = maxIter
self.trainSplit = 4.0/5
self.processRatings()
#self.processProbe()
self.splitDataset()
self.loadProcessedData()
if self.maxIter != None:
logging.debug("Maximum number of iterations: " + str(self.maxIter))
示例13: recommend
# 需要导入模块: from apgl.util.PathDefaults import PathDefaults [as 别名]
# 或者: from apgl.util.PathDefaults.PathDefaults import getOutputDir [as 别名]
def recommend(learner):
"""
Take a list of coauthors and read in the complete graph into a sparse
matrix X such that X_ij = k means author i has worked with j, k times. Then
do matrix factorisation on the resulting methods.
"""
outputDir = PathDefaults.getOutputDir() + "erasm/"
matrixFileName = outputDir + "Toy"
numExamples = 50
numFolds = 5
X = scipy.io.mmread(matrixFileName)
X = scipy.sparse.csr_matrix(X)
logging.debug("Loaded matrix " + str(X.shape) + " with " + str(X.getnnz()) + " non zeros")
X = X.tocsr()
X = X[0:numExamples ,:]
X, maxS = preprocess(X)
#Take out some ratings to form a training set
rowInds, colInds = X.nonzero()
randInds = numpy.random.permutation(rowInds.shape[0])
indexList = Sampling.crossValidation(numFolds, rowInds.shape[0])
paramList = []
for j, (trnIdx, tstIdx) in enumerate(indexList):
trainInds = randInds[trnIdx]
testInds = randInds[tstIdx]
trainX = SparseUtils.selectMatrix(X, rowInds[trainInds], colInds[trainInds]).tocsr()
testX = SparseUtils.selectMatrix(X, rowInds[testInds], colInds[testInds]).tocsr()
paramList.append((trainX, testX, learner))
pool = multiprocessing.Pool(processes=multiprocessing.cpu_count())
results = pool.map(computeTestError, paramList)
#results = map(computeTestError, paramList)
testErrors = numpy.array(results)
meanTestErrors = testErrors.mean()
logging.debug("Test errors = " + str(meanTestErrors))
errorFileName = outputDir + "results_" + learner.name()
numpy.savez(errorFileName, meanTestErrors)
logging.debug("Saved results as " + errorFileName)
示例14: computeLearningRates
# 需要导入模块: from apgl.util.PathDefaults import PathDefaults [as 别名]
# 或者: from apgl.util.PathDefaults.PathDefaults import getOutputDir [as 别名]
def computeLearningRates(datasetNames, numProcesses, fileNameSuffix, learnerName, sampleSizes, foldsSet):
dataDir = PathDefaults.getDataDir() + "modelPenalisation/"
outputDir = PathDefaults.getOutputDir() + "modelPenalisation/"
learner, loadMethod, dataDir, outputDir, paramDict = getSetup(learnerName, dataDir, outputDir, numProcesses)
for i in range(len(datasetNames)):
logging.debug("Learning using dataset " + datasetNames[i][0])
outfileName = outputDir + datasetNames[i][0] + fileNameSuffix
fileLock = FileLock(outfileName + ".npz")
if not fileLock.isLocked() and not fileLock.fileExists():
fileLock.lock()
numRealisations = datasetNames[i][1]
gridShape = [numRealisations, sampleSizes.shape[0]]
gridShape.extend(list(learner.gridShape(paramDict)))
gridShape = tuple(gridShape)
betaGrids = numpy.zeros(gridShape)
for k in range(sampleSizes.shape[0]):
sampleSize = sampleSizes[k]
logging.debug("Using sample size " + str(sampleSize))
for j in range(numRealisations):
Util.printIteration(j, 1, numRealisations, "Realisation: ")
trainX, trainY, testX, testY = loadMethod(dataDir, datasetNames[i][0], j)
numpy.random.seed(21)
trainInds = numpy.random.permutation(trainX.shape[0])[0:sampleSize]
validX = trainX[trainInds,:]
validY = trainY[trainInds]
betaGrids[j, k, :] = learner.learningRate(validX, validY, foldsSet, paramDict)
numpy.savez(outfileName, betaGrids)
logging.debug("Saved results as file " + outfileName + ".npz")
fileLock.unlock()
示例15: testWriteToFile
# 需要导入模块: from apgl.util.PathDefaults import PathDefaults [as 别名]
# 或者: from apgl.util.PathDefaults.PathDefaults import getOutputDir [as 别名]
def testWriteToFile(self):
pw = PajekWriter()
directory = PathDefaults.getOutputDir() + "test/"
#Have to check the files
fileName1 = directory + "denseTestUndirected"
pw.writeToFile(fileName1, self.dGraph1)
fileName2 = directory + "denseTestDirected"
pw.writeToFile(fileName2, self.dGraph2)
fileName3 = directory + "sparseTestUndirected"
pw.writeToFile(fileName3, self.sGraph1)
fileName4 = directory + "sparseTestDirected"
pw.writeToFile(fileName4, self.sGraph2)
fileName5 = directory + "dictTestUndirected"
pw.writeToFile(fileName5, self.dctGraph1)
fileName6 = directory + "dictTestDirected"
pw.writeToFile(fileName6, self.dctGraph2)