当前位置: 首页>>代码示例>>Python>>正文


Python SparseGraph.outDegreeSequence方法代码示例

本文整理汇总了Python中apgl.graph.SparseGraph.SparseGraph.outDegreeSequence方法的典型用法代码示例。如果您正苦于以下问题:Python SparseGraph.outDegreeSequence方法的具体用法?Python SparseGraph.outDegreeSequence怎么用?Python SparseGraph.outDegreeSequence使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在apgl.graph.SparseGraph.SparseGraph的用法示例。


在下文中一共展示了SparseGraph.outDegreeSequence方法的4个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: testDegreeDistribution

# 需要导入模块: from apgl.graph.SparseGraph import SparseGraph [as 别名]
# 或者: from apgl.graph.SparseGraph.SparseGraph import outDegreeSequence [as 别名]
    def testDegreeDistribution(self):
        #We want to see how the degree distribution changes with kronecker powers


        numVertices = 3
        numFeatures = 0

        vList = VertexList(numVertices, numFeatures)
        initialGraph = SparseGraph(vList)
        initialGraph.addEdge(0, 1)
        initialGraph.addEdge(1, 2)

        for i in range(numVertices):
            initialGraph.addEdge(i, i)

        logging.debug((initialGraph.outDegreeSequence()))
        logging.debug((initialGraph.degreeDistribution()))

        k = 2
        generator = StochasticKroneckerGenerator(initialGraph, k)
        graph = generator.generateGraph()

        logging.debug((graph.outDegreeSequence()))
        logging.debug((graph.degreeDistribution()))

        k = 3
        generator = StochasticKroneckerGenerator(initialGraph, k)
        graph = generator.generateGraph()

        logging.debug((graph.degreeDistribution()))
开发者ID:charanpald,项目名称:APGL,代码行数:32,代码来源:StochasticKroneckerGeneratorTest.py

示例2: testGenerate2

# 需要导入模块: from apgl.graph.SparseGraph import SparseGraph [as 别名]
# 或者: from apgl.graph.SparseGraph.SparseGraph import outDegreeSequence [as 别名]
    def testGenerate2(self):
        """
        Make sure that the generated degree is less than or equal to the given degree
        
        """
        numVertices = 10

        for i in range(10): 
            degSequence = numpy.random.randint(0, 3, numVertices)
            generator = ConfigModelGenerator(degSequence)
            graph = SparseGraph(GeneralVertexList(numVertices))
            graph = generator.generate(graph)

            self.assertTrue((graph.outDegreeSequence()<=degSequence).all())

        #We try to match an evolving degree sequence 
        degSequence1 = numpy.array([0,0,1,1,1,2,2,2,3, 4])
        degSequence2 = numpy.array([2,0,3,1,2,2,2,2,3, 4])
        degSequence3 = numpy.array([2,1,4,1,2,2,2,2,3, 6])

        generator = ConfigModelGenerator(degSequence1)
        graph = SparseGraph(GeneralVertexList(numVertices))
        graph = generator.generate(graph)
        self.assertTrue((degSequence1>= graph.outDegreeSequence()).all())

        deltaSequence = degSequence2 - graph.outDegreeSequence()
        generator = ConfigModelGenerator(deltaSequence)
        graph = generator.generate(graph, False)
        self.assertTrue((degSequence2>= graph.outDegreeSequence()).all())

        deltaSequence = degSequence3 - graph.outDegreeSequence()
        generator = ConfigModelGenerator(deltaSequence)
        graph = generator.generate(graph, False)
        self.assertTrue((degSequence3>= graph.outDegreeSequence()).all())
开发者ID:awj223,项目名称:Insight-Data-Engineering-Code-Challenge,代码行数:36,代码来源:ConfigModelGeneratorTest.py

示例3: testGenerateGraph

# 需要导入模块: from apgl.graph.SparseGraph import SparseGraph [as 别名]
# 或者: from apgl.graph.SparseGraph.SparseGraph import outDegreeSequence [as 别名]
    def testGenerateGraph(self):
        k = 2
        numVertices = 3
        numFeatures = 0

        vList = VertexList(numVertices, numFeatures)
        initialGraph = SparseGraph(vList)
        initialGraph.addEdge(0, 1)
        initialGraph.addEdge(1, 2)

        for i in range(numVertices):
            initialGraph.addEdge(i, i)

        d = initialGraph.diameter()
        degreeSequence = initialGraph.outDegreeSequence()
        generator = StochasticKroneckerGenerator(initialGraph, k)

        graph = generator.generateGraph()
        d2 = graph.diameter()
        degreeSequence2 = graph.outDegreeSequence()

        self.assertTrue((numpy.kron(degreeSequence, degreeSequence) == degreeSequence2).all())
        self.assertTrue(graph.getNumVertices() == numVertices**k)
        self.assertTrue(graph.getNumDirEdges() == initialGraph.getNumDirEdges()**k)
        self.assertEquals(d, d2)

        #Try different k
        k = 3
        generator.setK(k)
        graph = generator.generateGraph()
        d3 = graph.diameter()
        degreeSequence3 = graph.outDegreeSequence()

        self.assertTrue((numpy.kron(degreeSequence, degreeSequence2) == degreeSequence3).all())
        self.assertTrue(graph.getNumVertices() == numVertices**k)
        self.assertTrue(graph.getNumDirEdges() == initialGraph.getNumDirEdges()**k)
        self.assertEquals(d, d3)

        #Test the multinomial degree distribution
        logging.debug(degreeSequence)
        logging.debug(degreeSequence2)
        logging.debug(degreeSequence3)
开发者ID:charanpald,项目名称:APGL,代码行数:44,代码来源:StochasticKroneckerGeneratorTest.py

示例4: testGenerate

# 需要导入模块: from apgl.graph.SparseGraph import SparseGraph [as 别名]
# 或者: from apgl.graph.SparseGraph.SparseGraph import outDegreeSequence [as 别名]
    def testGenerate(self):
        degSequence = numpy.array([2, 1, 3, 0, 0, 0, 0, 0, 0, 1])
        generator = ConfigModelGenerator(degSequence)

        numVertices = 10
        graph = SparseGraph(GeneralVertexList(numVertices))
        graph = generator.generate(graph)

        tol = 3
        self.assertTrue(numpy.linalg.norm(degSequence - graph.degreeSequence()) < tol)

        degSequence = numpy.array([2, 1, 3, 0, 2, 1, 4, 0, 0, 1])
        generator.setOutDegSequence(degSequence)
        graph.removeAllEdges()
        graph = generator.generate(graph)

        self.assertTrue(numpy.linalg.norm(degSequence - graph.degreeSequence()) < tol)

        #Test using a non-empty graph
        degSequence = numpy.array([0, 0, 0, 2, 0, 0, 0, 1, 1, 0])
        generator.setOutDegSequence(degSequence)
        oldDegSequence = graph.degreeSequence()

        self.assertRaises(ValueError, generator.generate, graph, True)
        graph = generator.generate(graph, False)

        diffSequence = graph.degreeSequence() - oldDegSequence
        self.assertTrue(numpy.linalg.norm(degSequence - diffSequence) < tol)

        #Test the case where we also have an in-degree sequence
        degSequence = numpy.array([2, 1, 3, 0, 0, 0, 0, 0, 0, 1])
        inDegSequence = numpy.array([1, 1, 1, 1, 1, 1, 1, 0, 0, 0])
        generator = ConfigModelGenerator(degSequence, inDegSequence)

        graph = SparseGraph(GeneralVertexList(numVertices))
        self.assertRaises(ValueError, generator.generate, graph)

        graph = SparseGraph(GeneralVertexList(numVertices), False)
        graph = generator.generate(graph)

        self.assertTrue(numpy.linalg.norm(degSequence - graph.outDegreeSequence()) < tol)
        self.assertTrue(numpy.linalg.norm(inDegSequence - graph.inDegreeSequence()) < tol)

        outDegSequence = numpy.array([2, 1, 3, 0, 2, 1, 4, 0, 0, 1])
        inDegSequence = numpy.array([1, 2, 1, 1, 2, 1, 2, 1, 2, 1])
        generator.setOutDegSequence(outDegSequence)
        generator.setInDegSequence(inDegSequence)
        graph.removeAllEdges()
        graph = generator.generate(graph)

        self.assertTrue(numpy.linalg.norm(outDegSequence - graph.outDegreeSequence()) < tol)
        self.assertTrue(numpy.linalg.norm(inDegSequence - graph.inDegreeSequence()) < tol)

        #In the case that the in-degree sequence sum larger than that of the out-degree it is
        #not satisfied, but the out-degree should be. 
        inDegSequence = numpy.array([1, 2, 1, 1, 2, 1, 2, 1, 5, 6])
        generator.setInDegSequence(inDegSequence)
        graph.removeAllEdges()
        graph = generator.generate(graph)
        self.assertTrue(numpy.linalg.norm(outDegSequence - graph.outDegreeSequence()) < tol)

        #Now try the other way around
        generator.setOutDegSequence(inDegSequence)
        generator.setInDegSequence(outDegSequence)
        graph.removeAllEdges()
        graph = generator.generate(graph)
        self.assertTrue(numpy.linalg.norm(outDegSequence - graph.inDegreeSequence()) < tol)

        #Test growing graph
        outDegSequence = numpy.array([2, 1, 3, 0, 2, 1, 4, 0, 0, 1])
        inDegSequence = numpy.array([1, 2, 1, 1, 2, 1, 2, 1, 2, 1])

        generator.setOutDegSequence(outDegSequence)
        generator.setInDegSequence(inDegSequence)
        graph.removeAllEdges()
        graph = generator.generate(graph)

        newOutDegreeSequence = numpy.array([2, 1, 3, 5, 2, 1, 4, 0, 0, 1])
        newInDegreeSequence = numpy.array([2, 3, 2, 2, 3, 1, 2, 1, 2, 1])
        diffOutSequence = newOutDegreeSequence - graph.outDegreeSequence()
        diffInSequence = newInDegreeSequence - graph.inDegreeSequence()
        generator.setOutDegSequence(diffOutSequence)
        generator.setInDegSequence(diffInSequence)
        graph = generator.generate(graph, False)

        self.assertTrue(numpy.linalg.norm(newOutDegreeSequence - graph.outDegreeSequence()) < tol)
        self.assertTrue(numpy.linalg.norm(newInDegreeSequence - graph.inDegreeSequence()) < tol)
开发者ID:awj223,项目名称:Insight-Data-Engineering-Code-Challenge,代码行数:89,代码来源:ConfigModelGeneratorTest.py


注:本文中的apgl.graph.SparseGraph.SparseGraph.outDegreeSequence方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。